PREFACE

Thanks for choosing A510 series heavy－duty closed－loop vector frequency inverter produced by Shenzhen Sunfar Electric Technologies Co．，Ltd．

This Manual is the operating manual for A510 series closed－loop vector frequency inverter．It provides all relevant instructions and precautions for installation，wiring，functional parameters，daily care and maintenance，fault diagnosis and troubleshooting of A510 series inverter．

In order to use this series of inverters correctly，guarantee product＇s best performance whilst ensuring the safety of users and equipment，be sure to read this manual carefully before using A510 series inverters．Improper use may cause malfunction of the drive，reduce its service life and damage other equipments and lead to personal injury and death，etc

A user manual is provided with each Variable frequency Drive．Please keep it in a convenient location so it can be referred to for installation and maintenance．Owing to the constant improvement of products，the data within future versions of this manual may be changed without further notice．

தШП区ノデ凹方电气

CATALOG

1. PRODUCT CONFIRMATION AND OPERATION CAUTIONS 1
1.1 PRODUCT CONFIRMATION 1
1.1.1 CONFIRMATION OF FREQUENCY INVERTER BODY AND ACCESSORIES 1
1.1.2 NAMEPLATE OF FREQUENCY INVERTER 1
1.2 SAFETY CAUTIONS 1
1.2.1 NOTICES DURING INSTALLATION 2
1.2.2 SAFETY CAUTION FOR WIRING 2
1.2.3 SAFETY CAUTION FOR RUNNING OPERATION 3
1.2.4 SAFETY CAUTION FOR MAINTENANCE CHECK 3
1.3 KNOWLEDGE ON OPERATION. 3
1.3.1 APPLICATION KNOWLEDGE OF DRIVING GENERAL MOTOR 3
1.3.2 APPLICATION KNOWLEDGE OF DRIVING SPECIAL MOTOR 4
1.3.3 AMBIENT ENVIRONMENT 4
1.3.4 CONNECTION KNOWLEDGE OF PERIPHERAL EQUIPMENT 4
1.3.5 TRANSPORTATION AND STORAGE 4
1.4 ABANDON CAUTION 4
2. PRODUCTION INTRODUCTION 5
2.1 INVERTER MODEL 5
2.2 PRODUCT APPEARANCE 5
2.3 MODEL TABLE 6
2.4 PRODUCT TECHNICAL INDEX AND SPECIFICATIONS 7
3. INSTALLATION OF FREQUENCY INVERTER 11
3.1 INSTALLATION OF FREQUENCY INVERTER 11
3.1.1 MOUNTING SURFACE 11
3.1.2 INSTALLATION SPACE 11
3.1.3 MULTIPLE INSTALLATIONS 12
3.2 SIZE AND ASSEMBLY OF OPERATION PANEL 12
3.2.1 DISASSEMBLY 13
3.2.2 INSTALLATION 13
3.2.3 EXTENSION OF EXTERNAL CONNECTION 13
3.3 DISASSEMBLY OF TERMINAL COVER 14
3.3.1 DISASSEMBLY AND INSTALLATION OF PLASTIC COVER PLAT 14
3.3.2 DISASSEMBLY AND INSTALLATION OF SHEET-METAL COVER PLATE 15
3.4 INSTALLATION SIZE OF PANEL 15
3.5 DISASSEMBLY AND INSTALLATION OF EXPANSION CARD 16
3.6 INSTALLATION SIZE OF FREQUENCY INVERTER 17
4. WIRING OF FREQUENCY INVERTER 19
4.1 CAUTIONS OF WIRING 19
4.2 CONNECTION OF OPTIONAL FITTINGS AND FREQUENCY INVERTER 20
4.3 WIRING OF STANDARD INTERFACE CARD TERMINAL 22
4.3.1 WIRING OF STANDARD INTERFACE CARD TERMINAL CON1 AND CON2 22
4.3.2 FUNCTION DESCRIPTION OF CONTROL TERMINAL 22
4.4 WIRING OF MAJOR LOOP TERMINAL 24
4.4.1 TERMINAL FUNCTIONS 24
4.4.2 WIRING OF MAJOR LOOP TERMINAL AND TERMINAL BLOCKS 25
4.5 WIRING CONNECTION OF BASIC OPERATION 26
5. OPERATION AND SIMPLE RUNNING OF FREQUENCY INVERTER 27
5.1 BASIC FUNCTION OF PANEL 27
5.1.1 DESCRIPTION OF OPERATING PANEL 27
5.2 BASIC FUNCTIONS AND OPERATING METHODS OF PANEL 29
5.2.1 BASIC FUNCTIONS OF PANEL 29
5.2.2 OPERATING METHODS OF PANEL 31
5.3 SIMPLE RUNNING OF FREQUENCY INVERTER 34
5.3.1 OPERATION PROCESS 34
5.3.2 INITIAL SETTING OF FREQUENCY INVERTER. 37
5.3.3 SIMPLE OPERATION 38
6. FUNCTIONAL PARAMETER TABLE 40
6.1 EXPLANATIONS 40
6.2 FUNCTION TABLE 40
6.2.1 SYSTEM MANAGEMENT PARAMETER 40
6.2.2 SELECTION OF RUNNING COMMANDS 43
6.2.3 FREQUENCY SETTINGS 44
6.2.4 CONTROL COMMAND SOURCE 45
6.2.5 START AND STOP 45
6.2.6 ACCELERATION AND DECELERATION PARAMETERS 47
6.2.7 CARRIER FREQUENCY 47
6.2.8 V/F PARAMETERS AND OVERLOAD PROTECTION FOR MOTOR 1 48
6.2.9 V/F PARAMETERS AND OVERLOAD PROTECTION FOR MOTOR 2 48
6.2.10 STEADY RUNNING 49
6.2.11 PARAMETERS OF MOTOR 1 50
6.2.12 VECTOR PARAMETERS OF MOTOR 2 51
6.2.13 PARAMETER MEASUREMENT AND PRE-EXCITATION 52
6.2.14 MULTIFUNCTIONAL INPUT TERMINAL 52
6.2.15 MULTIFUNCTIONAL OUTPUT TERMINAL 53
6.2.18 ANALOG INPUT. 54
6.2.19 ANALOG INPUT CURVE CORRECTION 55
6.2.20 ANALOG OUTPUT. 55
6.2.21 ANALOG INPUT POWER FAILURE DETECTION 56
6.2.22 SIMULATED ANALOG INPUT (PSEUDO INPUT) 57
6.2.23 SKIPPING FREQUENCY 57
6.2.24 BUILT-IN AUXILIARY TIMER 58
6.2.25 BUILT-IN AUXILIARY COUNTER 59
6.2.26 AUXILIARY FUNCTIONS 60
6.2.27 MOTOR TEMPERATURE DETECTION 62
6.2.28 MULTI-STAGE FREQUENCY SETTING 62
6.2.29 SIMPLE PROGRAMMABLE MULTI-STAGE OPERATION 63
6.2.30 SWING FREQUENCY OPERATION 64
6.2.31 STANDARD PID (4ms CONTROL CYCLE) 65
6.2.32 STANDARD PID MULTI-STAGE SETTING 68
6.2.34 REVOLUTION SETTING AND FEEDBACK 68
6.2.35 REVOLUTION CLOSED-LOOP PARAMETER. 70
6.2.36 PROTECTION PARAMETER 71
6.2.37 TORQUE CONTROL 71
6.2.38 HIGH SPEED PID (RUNNING CYCLE: 1ms) 73
6.2.39 HIGH SPEED PID CONTROLLER PARAMETER SELECTION 74
6.2.40 MODBUS FIELDBUS (STANDARD EXPANSION CARD CONFIGURATION) 75
6.2.41 MAPPING ACCESS PARAMETER 76
6.2.42 COMMUNICATION LINKAGE SYNCHRONOUS CONTROL 77
6.2.43 PARAMETERS OF EXPANSION COMMUNICATION MODULE 78
6.2.44 EXPANSION MULTIFUNCTIONAL INPUT TERMINAL (EDII~ EDI8)/ EFFECTIVE AFTER CONNECTING EXPANDING ACCESSORIES 78
6.2.45 EXPANSION MULTIFUNCTIONAL INPUT TERMINAL 79
6.2.46 ZERO-SPEED TORQUE AND POSITION CONTROL 79
6.2.47 SIMULATED INPUT AND OUTPUT. 81
6.2.48 PROTECTION FUNCTION CONFIGURATION PARAMETER 82
6.2.49 CORRECTION PARAMETER 84
6.2.50 SPECIAL FUNCTIONAL PARAMETERS 84
6.2.51 OTHER CONFIGURATION PARAMETERS 85
6.2.52 HISTORICAL FAULT RECORDING 86
6.2.53 OPERATION STATUS AT THE LAST FAULT 86
6.2.54 BASIC STATUS PARAMETER 87
6.2.55 AUXILIARY STATUS PARAMETER 89
6.2.56 MODBUS FIELDBUS STATUS PARAMETER 89
6.2.57 TERMINAL STATUS AND VARIABLE 90
6.2.58 COUNTER TIMER VALUE 90
6.2.59 SPINDLE CONTROL AND SCALE POSITIONING STATUS PARAMETER 91
6.2.60 EQUIPMENT INFORMATION 91
TABLE 1: COMPARISON TABLE OF MULTIFUNCTIONAL TERMINAL (DI/EDI/SDI) FUNCTIONS 92
TABLE 2: COMPARISON TABLE OF MULTIFUNCTIONAL OUTPUT TERMINAL (DO/EDO/SDO) VARIABLES 92
TABLE 3: COMPARISON TABLE OF MONITOR VARIABLES 94
7. DETAILED FUNCTION INSTRUCTIONS 96
7.1 SYSTEM MANAGEMENT (GROUP F0.0) 96
7.2 RUNNING COMMAND SELECTION (GROUP F0.1) 104
7.3 FREQUENCY SETUP (GROUP F0.2) 110
7.4 CONTROL COMMAND SOURCE (GROUP F0.3) 114
7.5 START AND STOP (GROUP F0.4) 115
7.6 ACCELERATION AND DECELERATION CHARACTERISTICS (GROUP F1.0) 121
7.7 CARRIER FREQUENCY (GROUP F1.1) 123
7.8 V/F PARAMETERS AND OVERLOAD PROTECTION (MOTOR 1) (GROUP F1.2) 124
7.9 STEADY RUNNING (GROUP F1.4) 125
7.10 VECTOR PARAMETERS (GROUP F2.0) 129
7.11 MOTOR PARAMETER TUNING (GROUP F2.2) 131
7.12 MULTIFUNCTIONAL INPUT TERMINAL (GROUP F3.0) 132
7.13 MULTIFUNCTIONAL OUTPUT TERMINAL (GROUP F3.1) - 141
7.14 PULSE INPUT (GROUP F3.2) 144
7.15 PULSE OUTPUT (GROUP F3.3) 145
7.16 ANALOG INPUT (GROUP F4.0) 146
7.17 ANALOG INPUT CURVE CORRECTION (GROUP F4.1) 147
7.18 ANALOG OUTPUT (GROUP F4.2) 147
7.19 ANALOG INPUT WIRE-BREAK DETECTION (GROUP F4.3) 149
7.20 HOPPING FREQUENCY (GROUP F5.0) 149
7.21 BUILT-IN AUXILIARY TIMER (GROUP F5.1) 150
7.21.1 BASIC FUNCTIONS OF THE TIMER 150
7.21.2 TRIGGER AND GATE CONTROL FUNCTION SETTING OF TIMER 151
7.21.3 CLOCK CONCATENATION FUNCTION SETTING OF TIMER 151
7.21.4 CONCATENATION TRIGGER FUNCTION SETTING OF TIMER 151
7.22 BUILT-IN AUXILIARY COUNTER (GROUP F5.2) 152
7.23 AUXILIARY FUNCTIONS (GROUP F5.3) 152
7.24 MOTOR TEMPERATURE DETECTION (GROUP F5.4) 156
7.25 MULTI-STAGE FREQUENCY SETTING (GROUP F6.0) 158
7.26 SIMPLE PROGRAMMABLE MULTI-STAGE OPERATION (GROUP F6.1) 162
7.27 SWING FREQUENCY OPERATION (GROUP F6.2) 162
7.28 PROCESS PID (4ms CONTROL CYCLE) (GROUP F7.0) 166
7.29 PROCESS PID MULTI-STAGE SETTING (GROUP F7.1) 170
7.30 PROCESS PID SLEEPING FUNCTION (GROUP F7.2) 170
7.31 REVOLUTION SETTING AND FEEDBACK (GROUP F8.0) 170
7.32 REVOLUTION CLOSED-LOOP PARAMETER (GROUP F8.1) 173
7.33 PROTECTIVE PARAMETERS (GROUP F8.2) 175
7.34 TORQUE CONTROL (GROUP F8.3) 176
7.35 COMPENSATION PID (1ms CONTROL CYCLE) (GROUP F9.0) 178
7.36 PARAMETER SELECTION OF COMPENSATION PID CONTROLLER (GROUP F9.1) 178
7.37 MODBUS FIELDBUS (GROUP FA.0) 180
7.38 MAPPING PARAMETER ACCESS (GROUP FA.1) 180
7.39 COMMUNICATION LINKAGE SYNCHRONOUS CONTROL (GROUP FA.2) 182
7.40 EXPANSION MULTIFUNCTIONAL INPUT TERMINAL (GROUP FB.0) 183
7.41 EXPANSION MULTIFUNCTIONAL INPUT TERMINAL (GROUP FB.1) 183
7.44 PROTECTING FUNCTION CONFIGURATION PARAMETERS (GROUP FF.1) 187
7.45 CORRECTION PARAMETERS (GROUP FF.2) 188
7.46 SPECIAL FUNCTIONAL PARAMETERS (GROUP FF.3) 190
7.47 OTHER CONFIGURATION PARAMETERS (GROUP FF.4) 190
8. WARNING, ALARM DIAGNOSIS AND COUNTER MEASURES 192
8.1 TROUBLESHOOTING WITH WARNING OR ALARM DISPLAY 192
8.1.1 ALARM DISPLAY AND TROUBLESHOOTING 192
8.1.2 WARNING DISPLAY AND TROUBLESHOOTING. 197
8.2 ABNORMAL OPERATION WITHOUT PROMPTS AND THE SOLUTIONS 199
8.3 FAILURES IN SETTING OPERATION OF FREQUENCY INVERTER 202
9. NO DISPLAY IN THE OPERATION PANEL 202
10. THE FUNCTION CODE CAN NOT BE CHANGED 202
8.4 INQUIRY FOR FAILURE RECORD 202
8.5 RESET OF WARNING OR ALARM FAILURE 204
11. MAINTENANCE 205
9.1 ROUTINE MAINTENANCE 205
9.2 INSPECTION AND DISPLACEMENT OF THE VULNERABLE COMPONENTS 206
9.2.1 FILTER CAPACITOR 206
9.2.2 COOLING FAN 206
9.3 STORAGE 207
9.4 WARRANTY 207
12. EXAMPLE OF USAGE 208
10.1 ENERGY-SAVING TRANSFORMATION OF ESCALATORS 208
10.1.1 SCHEME DESCRIPTION 208
10.1.2 WIRING DIAGRAM 209
10.2 MAKE SIMPLE TENSION CLOSED-LOOP CONTROL WITH OFFSET PID 209
10.2.1 DIAGRAM OF CONSTANT TENSION CONTROL 210
10.2.2 DIAGRAM OF CONTROL STRUCTURE 210
10.2.3 CONFIGURATION 210
10.2.4 WIRING DIAGRAM 211
10.3 APPLICATION IN MECHANICAL FACTORY 212
10.3.1 CONFIGURATION 212
10.3.2 EXTERNAL CIRCUIT WIRING DIAGRAM 212
10.4 MULTI-PID SETUP, MULTI-PART PID SETUP, FORM A MULTI-STEP PIDSETUP (TO REDUCE OVERSTRIKE) 213
10.4.1 PARAMETER SETUP 213
10.4.2 DIAGRAM OF STEP PID VALUE GIVEN 213
13. DESCRIPTION OF COMMUNICATION PROTOCOL 214
11.1 MODBUS PROTOCOL DESCRIPTION 214
11.1.1 PROTOCOL OVERVIEW 214
11.1.2 INTERFACE AND TRANSMISSION METHOD 214
11.1.3 DATA STRUCTURE 214
11.1.4 PARAMETER CONFIGURATION FOR FREQUENCY INVERTERS 215
11.1.5 BRIEF INTRODUCTION OF FUNCTIONS 215
11.1.6 ACCESS ADDRESS SUMMARY 216
11.1.7 DETAILED MODBUS ADDRESS-FINDING DISTRIBUTION 216
11.1.8 EXAMPLES 220
14. ACCESSORIES 222
12.1 BRAKING UNIT 222
12.1.1 MODEL OF BRAKE UNIT 222
12.1.2 MODEL SELECTION FOR BRAKE RESISTANCE 222
12.1.3 APPEARANCE OF BRAKE UNIT 223
12.1.4 INSTALLATION SIZE OF BRAKE UNIT 223
12.1.5 SINGLE BRAKE UNIT AND INVERTER REFERENCE WIRING SKETCH 224
12.1.6 WIRING PRECAUTIONS 224
12.2 I/O INTERFACE CARD (STANDARD TYPE: DEC5IOAS, PN: 050M008005000) 225
12.2.1 OUTSIDE VIEW OF I/O STANDARD INTERFACE CARD 225
12.2.2 FUNCTIONS OF I/O STANDARD INTERFACE CARD TERMINAL 225
12.2.3 ASSEMBY OF STANDARD INTERFACE CARD 226
12.2.4 WIRING FOR STANDARD INTERFACE CARD 226
12.3 I/O EXPANSION CARD STANDARD 227
12.3.1 I/O EXPANSION CARD STANDARD DIMENSIONS 227
12.3.2 FUNCTIONS OF I/O STANDARD INTERFACE CARD TERMINAL 227
12.4 PG FEEDBACK CARD (STANDARD TYPE DEC3PG12AA, PN: 050M009012001) 228
12.4.1 OUTSIDE VIEW OF PG FEEDBACK CARD (STANDARD) 228
12.4.2 FUNCTIONS OF PG CARD (STANDARD) TERMINAL 228
12.5 DESCRIPTION OF LED OPERATING PANEL 229
12.5.1 OUTSIDE VIEW OF LED OPERATING PANEL 229
12.5.2 OPERATING INSTRUCTIONS OF LED OPERATING PANEL 229

1. PRODUCT CONFIRMATION AND OPERATION CAUTIONS

1.1 PRODUCT CONFIRMATION

This unit has been subject to strict packaging before release from factory. However, in consideration of various factors during transportation, please check the outer packing carefully to see if there is any damage hat may have occurred during transportation; please check the label on the outer packing, and confirm the model and specifications are in accordance with your order. If any damage or discrepancy is found, please contact the supplier promptly for a solution.

1.1.1 CONFIRMATION OF FREQUENCY INVERTER AND ACCESSORIES

Confirm the frequency inverter nameplate details, and check for any damage that may have occurred during the transit, if any parts and components have sustained damage, and that the frequency inverter is complete with the following accessories:

- Operation instruction;
- Certification;
- Product list;
- Other ordered accessories;

If there is any omission or damage, please contact the supplier promptly for solution.

1.1.2 NAMEPLATE OF FREQUENCY INVERTER

On the frequency inverter, there is a nameplate marked with model, rated parameters, product serial-number and bar code of frequency inverter. The content of nameplate is shown as below:

1.2 SAFETY CAUTIONS

Read the Safety Cautions regarding, wiring, operation and maintenance, carefully prior to installation to ensure proper operation of this product.
"Tips", "Attention", "Warning and "Danger" in this operation manual are defined as follows:
> Tips: Tips for some useful information.
> Attention: Matter requires attention during operation.
$>$ Warning: These requirements must be followed to avoid the risk of injuries to personnel and the loss of material
> Danger: Without operation according to these requirements, serious damage to equipment or injuries to personnel may result.

1.2.1 NOTICES REGARDING INSTALLATION

1. The frequency inverter shall not be installed on combustibles that may induce the risk of fire.
2. The frequency inverter shall not be installed at places with direct sunlight.
3. The frequency inverter shall not be installed in areas with hazardous ratings; eg environment with explosive gases or combustible dusts.
4. Do not install the Frequency inverter if damaged or If components are missing. Installation may lead to personal injury, fire or other accidents.
5. Do not remove or modify the frequency inverter without authorization.
6. Do not drop foreign matter into the frequency inverter (eg: wire off cuts of wire, metal fillings, dust etc) Entry of foreign matter may result in destruction of the frequency inverter.
7. The frequency inverter shall be installed only where the supporting structure is able to bear its weight.

1.2.2 NOTICES REGARDING INSTALLATION

1. All wiring must be completed by a certified electrician. If the wiring must be accordance to local regulations. All wiring must be done in a manner to ensure the safety of the equipment and all individuals.
2. Do not open the front cover of the frequency inverter for 10 minutes after removing power from the unit, Doing so may result in electric shock.
3. The earth terminal of frequency inverter must be reliably grounded. A poor earth connection may result in electric shock.
4. Connection of $A C$ power onto the output terminals $U, ~ V$ and W of frequency inverter, will damage the frequency inverter, and may lead to personal injury.
5. Confirm that the input voltage and frequency converter are in consistent with rated voltage value
6. To avoid the risk of damage to the frequency inverter, confirm that the motor and frequency converter are of equivalent voltage and current ratings.
7. A brake resistor cannot be connected onto the (+), (-) of DC bus directly. Direct connection to the DC Bus will cause excessive heat and may cause a fire.

1．2．3 CAUTIONS REGARDING SAFE OPERATION

1．Do not operate the frequency inverter with wet hands．To do so may result in electric shock．
2．Please install the front cover prior to power up and do not remove the cover while power is on．Removal of front cover may result in electric shock．

3．Do not touch the terminals of frequency inverter，while the frequency inverter is powered on，even if the motor is stopped．To do so will result in electric shock．

4．If the auto－restart function is enabled，do not approach the load as it may restart suddenly after the alarm has been removed and this may result in a personal injury．

5．To avoid the risk of personal and property damage，ensure the system is safe before restarting．
6．Please set additional emergency stop and isolation switches to avoid the risk of personal injury．
7．Do not touch the cooling fins of the heat sink and direct current（DC）choke as temperature can be very high．This may result in personal injury．

1．2．4 CAUTIONS REGARDING SAFE MAINTENANCE

1．Maintenance operations and device replacement only can be done by trained professional maintenance staff．During operation use only insulated tools．It is strictly prohibited to leave debris and metal in the frequency inverter．Doing so will increase the likely hood of electric shock，fire，and personal and property damage．

2．After replacement of the control board，corresponding parameters must be set before placing into operation to avoid the risk of property damage．

1．3 GENERAL OPERATION INFORMATION

1．3．1 GENNERAL INFORMATION REGARDING MOTOR OPERATION

1．The temperature of the driven motor when being run from a frequency inverter can be a little higher than if run from standard industrial power supply，especially with long－term operation at low speed，the operation life of a motor can be affected due to the effect of poorer heat dissipation．In these cases，the load on the motor can be reduced or additional cooling can be applied to the motor ．

2．With some equipment there can sometimes be resonance due to the natural vibration frequency of the mechanical system．To remove this consider applying a flexible coupling and insulation rubber，or using the frequency skipping parameters within of the frequency to avoid the resonant frequency points within the operating range．

3．When operating a motor from a frequency inverter，there can more motor noise than when running from a fixed industrial power supply．In order to reduce the noise，the carrier frequency of frequency inverter can be changed if required．

1．3．2 GENERAL INFORMATION FOR USE WITH SPECIAL MOTORS

1．For high－speed motors，if the set frequency of frequency inverter is above 120 Hz ，please conduct combination test with the motor to ensure it can be operated safely．

2．For synchronous motors，please contact the manufacturer for consultation．
3．Operation of single－phase motors cannot be achieved with this model frequency inverter．Even if using a single input phase，there will be a three－phase output．Please use with three－phase motors only．

1.3.3 AMBIENT ENVIRONMENT

For indoor use with temperature range of 10 to $+45^{\circ} \mathrm{C}$, humidity below 95% (without condensation of moisture), no dust, no direct sunlight, no corrosive gas, no combustible gas, no oil mist, no steam, no water or floating fiber or metal particles. If special requirements beyond these are required, please consult your supplier.

1.3.4 GENERL INFORMATION FOR THE CONNECTION OF PERIPHERAL EQUIPMENT

1. For the protection of wiring and the Frequency Inverter, please include circuit breakers on the input side. Please select devices with an appropriate capacity that provides the best protection.
2. If installing electromagnetic contactor on the output side of frequency inverter, please ensure the after frequency inverter and motor have stopped running before operating the contactor.
3. When using a thermal relay with a frequency inverter and when long cable runs are used, nuisance tripping may occur due to high-frequency current flowing and the capacitive effect within wiring. In this case, please lower the carrier frequency, or apply an output filter.
4. To reduce noise interference and to meet emissions standards the Frequency Inverter is fitted with a RFI filter. Screened cable must be used between the motor and the Frequency Inverter. The screen of the cable must be effectively earthed at both ends.
5. It is recommended that all control wiring is done using cable with a compact low impedance shield. Failure to use a shielded control cable may lead to the Frequency Inverter receiving false input signals.

1.3.5 TRANSPORTATION AND STORAGE

1. During product handling, please capture the both sides of the bottom of the entity, rather than the cover or parts only.
2. Please do not make the parts of plastic excessive forced, otherwise, there can be falling down or damage.
3. When it is for temporary storage and long-term storage, pay attention to the followings:
1) Try to be packaged in the packing case of our company as the original package for storage.
2) Long-term of storage will lead to the characteristics of electrolytic capacitor worsen, therefore, it shall be powered on every half year at least, and with conduction time more than half an hour, and the input voltage must be risen to the rated value gradually with voltage regulator.

1.4 SAFE DISPOSAL

1. Electrolytic capacitor in the frequency converter may explode if incinerated.
2. Harmful and toxic gas will be produced if the frequency inverter is incinerated.
3. Please classify and dispose of the frequency inverter as industrial waste.

1.5 OTHER CAUTIONS

1. This product should not be used in life support devices and other applications directly concerned with human safety.
2. If serious accidents or serious losses could be caused due to the operation or failure of this product, please install appropriate safety devices to ensure total safety.

2. PRODUCTION INTRODUCTION

2.1 INVERTER MODEL

2.2 PRODUCT APPEARANCE

- Appearance Type I

Suitable Mode: A510-4T0011H ~ A510-4T0110H

－Appearance Type II
Suitable Mode：A510－4T0150H～A510－4T0220H

Major loop terminal
－Appearance Type III
Suitable Mode：A510－4T0300H～A510－4T0550H

2.3 MODEL TABLE

Voltage Grade	Model	Constant Torque Load			Variable Torque Load		
		Rated capacity (KVA)	Adaptive motor (KW)	Rated current (A)	Rated capacity (KVA)	Adaptive motor (KW)	Rated current (A)
Three phase 380V	A510-4T0011H	2.0	1.1	3.0	2.4	1.5	3.7
	A510-4T0015H	2.4	1.5	3.7	3.6	2.2	5.5
	A510-4T0022H	3.6	2.2	5.5	4.9	3.0	7.5
	A510-4T0030H	4.9	3.0	7.5	6.3	4.0	9.5
	A510-4T0040H	6.3	4.0	9.5	8.6	5.5	13.0
	A510-4T0055H	8.6	5.5	13.0	11.2	7.5	17.0
	A510-4T0075	11.2	7.5	17.0	13.8	9.0	21
	A510-4T0090H	13.8	9.0	21	16.5	11	25
	A510-4T0110H	16.5	11	25	21.7	15	33
	A510-4T0150H	21.7	15	33	25.7	18.5	39
	A510-4T0185H	25.7	18.5	39	29.6	22	45
	A510-4T0220H	29.6	22	45	39.5	30	60
	A510-4T0300H	39.5	30	60	49.4	37	75
	A510-4T0370H	49.4	37	75	62.5	45	95
	A510-4T0450H	62.5	45	95	75.7	55	115
	A510-4T0550H	75.7	55	115	98.7	75	150
	A510-4T0750H	98.7	75	150	115.8	90	176
	A510-4T0900H	115.8	90	176	138.2	110	210
	A510-4T1100H	138.2	110	210	171.1	132	260
	A510-4T1320H	171.1	132	260	204	160	310

2．4 PRODUCT SPECIFICATIONS

Typical Function	Multi-segment running	16 -segment frequency/speed running, independent setting of the running direction, time and acceleration and deceleration of each segment
	Setting combinations	Hundreds of setting combinations of frequency, revolution and torque
	Setting priority	Users can choose the priority of frequency./revolution setting channels, hence allows for different kinds of setting combinations in application design.
	Process PID	Built-in PID controller (process PID, compensation PID), can be either used independently by external equipment or be used to create complicated internal compensation control There are 7-segment optional settings and flexible setting combination ways for the process PID
	Waking \& sleeping	Process PID has simple sleeping and wakening functions
	MODBUS communication	Standard MODBUS communication protocol (optional) allowing for flexible parameter reading and mapping
	Temperature detection	Able to detect PT100 or PTC thermo-sensitive elements, hence allows for over-temperature protection for the motor or external equipment
	Dynamic braking	(standard configuration for models below A510-4T0185H) Actuating voltage: $700 \sim 760 \mathrm{~V}$, braking ratio: $50 \sim 100 \%$
	General Functions	Power cut restart; fault self-recovery, motor parameter dynamic/ static self-identification. Start enabling, operation enabling, start delay, over current suppression, over voltage /under voltage suppression, V/F custom curve, analog input curve correction, line brake detection, textile machinery disturbance (frequency swing) operation
Function Features	Simulated I/O terminal	8-circuit one-to-one virtual output and input terminals, allowing for complicated engineering onsite application in an easy way
	V/F separate control	Users can flexibly and separately set the output frequency and output voltage value for special engineering application
	Spindle scaling control	To precisely control the spindle angle, for achieving scaling positioning
	Zero-speed torque holding	Hold the zero speed and lock the torque, and in the mode of PG feedback VC control, to enable for constant locking of the rotating spindle while it is pulled with load
	Communication linkage synchronization	Easily allows for synchronized rotation of multiple rotation, and free selection of linkage balance of multiple machines based on current, torque and power, and the exclusive position synchronized balance function can precisely eliminate accumulative position error caused by synchronized revolution error
	Load dynamic balance	Also allows for dynamic balance of multi-machine load (not limited to communication linkage) and able to achieve torque motor characteristics
	Strong starting torque	For load featuring high inertia and high static friction, super strong starting torque for certain period can be set
	Dual motor parameter	With two sets of motor parameters (two for both asynchronous motor and synchronous motor), allowing for dual motor switch even in the mode of vector control
	Synchronous motor driving	Built-in permanent magnet synchronous motor control algorithm

Function Features	Compensation PID	Especially built-in compensation PID, flexibly allowing for tension control, drawing machine control and other special applications
	Timer	3 built-in timers: 5 kinds of time, 5 kinds of trigger modes, multiple door access signals and working modes, and 7 kinds of output signals
	Counter	2 built-in counters: time margin selection, 4 kinds of trigger modes and 7 kinds of output signal
	Quick Setup	Application macro: allowing for conveniently setting and partially curing multiple common group parameters and simplifying parameter setting for common applications
		System macro: allowing for conveniently switching equipment's working mode, and automatically redefining local parameters
	Parameter testing	Any un-stored parameter tested on site can be stored with one key or abandoned and restored to original value
	Parameter display	Allowing for automatically shielding parameters of unused functional modules or selectively displaying modified, stored or changed parameters
Protection Function	Power supply	Under voltage protection, input phase failure protection and three-phase power supply unbalancing protection
	Running protection	Over current protection, over voltage protection, inverter over temperature protection, inverter overload protection, motor overload protection, output phase lack protection, and module drive protection
	Equipment abnormity	Current detected abnormity, EEPROM memory abnormity, and abnormal control unit, motor over temperature, MC pull-in fault, and temperature acquisition loop fault
	Motor connection	Motor not connected, motor's three-phased parameters unbalanced and parameter misidentification
	Extension card	Detect and protect the extension card for compatibility or conflict
Environment	Installation environment	Indoor vertical installation, not subjecting to direct sunshine, free of dust, corrosive and flammable gas, oil mist, vapor and free of drips or salt
	Altitude	$0 \sim 1000 \mathrm{~m}$. The output current capability drops by 10% for every rise of 1000 m
	Ambient temperature	Working ambient temperature: $-10^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$; storage ambient temperature: $-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
	Humidity	Below 95\%, no condensation
	Vibration	$<6 \mathrm{~m} / \mathrm{s}^{2}$

3. INSTALLATION OF FREQUENCY INVERTER

3.1 INSTALLATION OF FREQUENCY INVERTER

This series of frequency inverters are wall-mounted or cabinet frequency inverters, which should be installed vertically. Please install the frequency inverter within an appropriate enclosure with sufficient ventilation.

Please refer to 1.3.3 for installation environment. If there is special installation requirement from customer, please contact with manufacturer in advance.

3.1.1 MOUNTING SURFACE

When the ambient temperature is exceeds the specified rating, or the load is too heavy, the temperature of frequency inverters heat sink and base may rise to around $90^{\circ} \mathrm{C}$, therefore the frequency inverter must be installed on surfaces which can withstand temperatures in excess of this.

3.1.2 INSTALLATION SPACE

Requirements for installation spacing distance of single frequency inverter are as shown in Figure 3-1-A and Figure 3-1-B. Reserve enough space around the frequency inverter.

Figure 3-1-A Installation spacing distance (11KW below)

3．1．3 MULTIPLE INSTALLATIONS

For installations with more than 2 frequency inverters mounted in an enclosure together，please conduct parallel installation as shown in Figure 3－3．If there is no choice but vertical installation，please consider using a partition plate as shown in Figure 3－2，to make ensure there is no influence on upper frequency inverter from the lower frequency inverter．

Figure 3－2 Installation spacing between upper and lower frequency inverters
＞Horizontally close installations（Figure 3－2）are allowed for 4．0KW below，and $-10^{\circ} \mathrm{C} \sim 45^{\circ} \mathrm{C}$ environmental temperature．
＞For parallel installation of frequency inverters with different sizes，please install by aligning the upper parts of all the frequency inverters，allowing room for replacement of cooling fan．
＞Please don＇t install frequency inverter in the environment where loose particles（eg． cotton，lint，dust etc）may cause a blockage of the cooling fan．When operating in such environment，please install in a suitable cabinet that offers suitable protection．
$>$ If installing at a location beyond 1000 m above sea level，the frequency inverters output must be de－rated．See 2.4 product technical indexes and specifications for details．

3．2 SIZE AND ASSEMBLY OF OPERATION PANEL

A510 series inverters are configured as standard with the following two kinds of LCD operational panel；The models below 11 KW are configured with shuttle－type panel．

Figure 3-4-A LCD standard type
(Model DPNL360CA /PN 050M007360001)

Figure 3-4-B LCD shuttle type
(Model DPNL360CB /PN 050M007360002)

3.2.1 KEYPAD REMOVAL

Using your middle finger on the top edge of the keypad, gently press the top down and pulls outward. The operation panel will then disengage as shown in Figure 3-5.

3.2.2 KEYPAD INSTALLATION

Gently align the keypad on the clasps and connector. Push panel in gently, whilst keep it parallel to the front panel. Check that all three clasps have clicked into position, as shown in Figure 3-6.

Figure 3-5
Disassembly schematic diagram of operation panel

Figure 3-6
Installation schematic diagram of operation panel

3.2.3 KEYPAD REMOTE CONNECTION

When the keypad needs to be mounted away from the frequency inverter (eg: on an enclosure door), remove the keypad as shown in Figure 3-5, and mount in the designated position. Use an extension cable as Figure 3-7 below to connect frequency inverter and operation panel.

Figure 3-7 Connection diagram of extension keyboard
> The extension cable shall not exceed 15 meters; shielding layer is connected with ground terminal of frequency inverter. Please select fittings of remote operation panel for more than 15 meters.
$>$ Do not run the keypad extension cable in close proximity or parallel to power cables.
$>\quad$ The Keypad should be fixed to an even surface to avoid damage.

3.3 DISASSEMBLY OF TERMINAL COVER

3.3.1 DISASSEMBLY AND INSTALLATION OF PLASTIC TERMINAL COVER

- Disassembly:

To remove the plastic terminal cover, press the two buckles on the lower right and left corners, and then swing the bottom out, as shown in Figure3-8.

Figure 3-8 Disassembly and installation schematic diagram of plastic cover plate

- Installation:

Hold the bottom of the plastic terminal cover out at a 15° angle. Locate the top clips of the terminal plate cover in the slots of the shell. Gently swing the bottom of the cover plate down until it clicks into place.

3.3.2 DISASSEMBLY AND INSTALLATION OF METAL COVER PLATE

Disassembly and installation of sheet-metal cover plate are as shown in Figure 3-9

- Disassembly:
(1) Undo the two thumb screws at the bottom of cover plate;
(2) Swing the bottom of the cover plate out to a 15° angle and lift up to remove it.

Figure 3-9
Schematic diagram of disassembly and installation of sheet-metal cover plate

- Installation:
(1) Holding the bottom of the cover plate at an angle of 15° to the body, place the locator pin at the top of the cover plate firmly into the fixed groove on the top of the body.
(2) Swing the bottom of the cover plate down and onto the body.
(3) Tighten up the two thumb screws at the bottom of the cover plate.

3.4 REMOTE INSTALLATION OF PANEL

1. When remote mounting the keypad directly onto a panel or cabinet door, refer to Figure 3-10-C for the size of the hole.
2. When remote mounting the keypad using a Remote Door Mount Kit, refer to Figure 3-10-B for the size of the hole.

Figure 3－10－A
Installation size 1 of operation panel

Figure 3－10－B Installation size 2 of operation panel

Figure 3－10－C Installation size 3 of operation panel

3．5 DISASSEMBLY AND DISASSEMBLY OF EXPANSION CARD

Please refer to Figure 3－11 for disassembly and removal of expansion card．（Note：there are large and small sockets corresponding to the expansion card and the pallet，and the expansion card of the same size are exchangeable）．
－Installation：
（1）Place the expansion card horizontally in direction as shown in figure，to align the socket on the card with the socket on the pallet of the card，and then press down until the expansion card sticks tightly to the pallet；
（2）Tighten the fastening screw M3 at the left upper corner of the expansion card．
－Disassembly：
（1）Loosen the fastening screw M3 at the left upper corner of the expansion card；
（2）Pull expansion card up out from the pallet．

Figure 3－11 Schematic diagram of disassembly \＆installation of expansion board

3．6 INSTALLATION SIZE OF FREQUENCY INVERTER

Type I suitable model：A510－4T0011H～A510－4T0110H

Type II suitable model：
A510－4T0150H～A510－4T1320H

Specific installation sizes of A510 series frequency inverters as listed below:

Model of frequency inverter (three-phase 380V)	$\begin{gathered} \text { W1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{H} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	Specification of screw
A510-4T0011H	85	115	272.5	285	185	M5
A510-4T0015H						
A510-4T0022H						
A510-4T0030H	115	150	345	360	205	M5
A510-4T0040H						
A510-4T0055H						
A510-4T0075H	140	180	400	420	225	M6
A510-4T0090H						
A510-4T0110H						
A510-4T0150H	160	225	480	508	270	M8
A510-4T0185H						
A510-4T0220H						
A510-4T0300H	222.7	303	552	581	272	M8
A510-4T0370H						
A510-4T0450H	222.7	338	564	591	306	M8
A510-4T0550H						
A510-4T0750H	--	--	--	--	--	--
A510-4T0900H						
A510-4T1100H	--	--	--	--	--	--
A510-4T1320H						

4. WIRING OF FREQUENCY INVERTER

4.1 WIRING CAUTIONS

- Make sure a circuit breaker is connected between the Frequency Inverter and power supply to provide a safety trip if the frequency inverter is faulty.
- In order to reduce electromagnetic interference, please connect surge absorber on the coil of electromagnetic contactor, relay and etc. in the surrounding circuit of the frequency inverter.
- Please use shielded wire greater than $0.3 \mathrm{~mm}^{2}$ for the wiring of analog signals. The shielding shall be connected on the grounding terminal of the frequency inverter (keep single-end-earthed shielding layer) with wiring length of less than 30 m .
- Screened wire or shielded wire greater than $0.75 \mathrm{~mm}^{2}$ shall be selected for the wiring of input and output loop of relays.
- The control wiring shall be run separately from the power cables; it shall be at a distance greater than 10 cm for parallel wiring and vertical for cross wiring.
- All the supply and motor cables shall be fastened within the terminal to ensure good contact. The leading wires of major loop shall be adopted cables or copper bar. When using cables, wiring must not be carried out until they are cold pressed or welded well by lug plate with corresponding section.
- The pressurization of all the leading wires shall be in compliance with the voltage class of the frequency inverter.
- Please reliably ground the frequency inverter and motor locally.
> Absorption capacitor or other RC absorbers shall not be installed at U, V and W output end of the frequency inverter, as shown in Figure 4-1.

4.2 CONNECTION OF OPTIONAL FITTINGS AND FREQUENCY INVERTER

Figure 4-2 Wiring of frequency inverter

- Power supply

The power supply shall be in accordance with the specification of input power supply designated by this operating manual.

- Air switch
(1) When the frequency inverter is maintained or not in use for a long time, the air switch will separate the frequency inverter from the power supply;
(2) When the input side of the frequency inverter has failures like short circuit, the air switch can protect.
- AC input reactor

When the interaction of higher harmonic between the frequency inverter and power supply can not meet the requirements after serious wave form distortion of power grid or the frequency inverter is equipped with DC reactor, the AC input reactor can be added. The AC input reactor can improve the power factors at input side of the inverter and reduce the influence caused by unbalanced voltage of three-phase power supply.

- Filter at input side

EMI filter can be selected to restrict the high-frequency noise interference from the power cord of the frequency inverter.

- Contactor

It can cut off the power supply when the system protective function acts to prevent failure expanding.

The A510 range comes standard with a built-in DC reactor: An external DC reactor can be connected if the built-in DC reactor does not meet the requirements.

- Filter at output side

EMI filter can be selected to restrict the interference noise generated the output side of the inverter and wire leakage current.

- AC output reactor

When the wiring from the frequency inverter to the motor is longer (exceeding 20m), it can restrict radio interference and leakage current.

- Braking resistor

Improve the braking capacity of frequency inverter to avoid over voltage failure when slowing down.

The specification of recommended electric appliances is as follows:

Model of frequency inverter	Adaptive motor(KW)		Wire gauge (major loop) (mm^{2})	Air circuit breaker(A)	Electromagnetic contactor(A)
	General loads	Load for fan and water pump			
A510-4T0011H	1.1	1.5	1.5	16	12
A510-4T0015H	1.5	2.2	2.5	16	12
A510-4T0022H	2.2	3.0	4	16	12
A510-4T0030H	3.0	4.0	4	20	16
A510-4T0040H	4.0	5.5	4	25	16
A510-4T0055H	5.5	7.5	6	32	22
A510-4T0075H	7.5	9.0	6	40	32
A510-4T0090H	9.0	11	10	50	32
A510-4T0110H	11	15	10	63	32
A510-4T0150H	15	18.5	10	63	38
A510-4T0185H	18.5	22	16	80	45
A510-4T0220H	22	30	16	100	63
A510-4T0300H	30	37	25	125	75
A510-4T0370H	37	45	25	160	85
A510-4T0450H	45	55	35	200	110
A510-4T0550H	55	75	50	225	140
A510-4T0750H	75	90	70	250	170
A510-4T0900H	90	110	70	315	205
A510-4T1100H	110	132	95	400	250
A510-4T1320H	132	160	95	400	330

The power of motor can be increased by one size when the A510 series frequency inverter is connected with Variable Torque loads (capacity increase).

4.3 WIRING OF STANDARD INTERFACE CARD
 4.3.1 WIRING OF STANDARD INTERFACE CARD CON1 AND CON2 (EX-WORK STANDARD CONFIGURATION)

CON1 and CON2 terminals are arranged as follows:

4.3.2 FUNCTION DESCRIPTION OF CONTROL TERMINAL

Type	Label of terminal	Name	Function description of terminal	Specification
Control terminal	DI1—CM	Multifunctional input terminal DI1	5-circuit programmable switching value input terminal can be selected 98 kinds of operational control commands by function code in F3.0 group by programming. See Reference Table for Function Selection of Multifunctional Terminal for detail.	Input voltage: $5 \sim 24 \mathrm{VDC}$ Input current: $1 \sim 5 \mathrm{~mA} \text {. }$ See the following figure for the wiring way.
	DI2-CM	Multifunctional input terminal DI2		
	DI3-CM	Multifunctional input terminal DI3		
	DI4-CM	Multifunctional input terminal DI4		
	DI5-CM	Multifunctional input terminal DI5		
Operating status output	PLC	Common terminal of multifunctional input	The common terminal of the multifunctional input terminal (connected to 24 V by default). When external signal is used to drive DI1~DI5, PLC should be connected to external power supply, and disconnected from +24 V .	Maximum load current is 150 mA ; the highest withstand voltage is 24 V .
	DO1—CM	Multifunctional output terminal DO1	2-circuit programmable open collector output and 1-circuit programmable relay output terminal; 63 kinds of operating status output can be selected by the function code in F3.1 group by programming. See Reference Table for Variables of Multifunctional Output Terminal for detail.	
	DO2-CM	Multifunctional output terminal DO2		
	TA1	Multifunctional relay output TA1-TB1 normally closed TA1-TC 1normally open		Contact capacity: AC 250V/2A
	TB1			
	TC1			

Type	Label of terminal	Name	Function description of terminal	Specification
Power supply	CM	+24 V power supply reference place	Power supply of switching value terminal	Maximum output current:100mA
	+24V	+24V power supply		
Analog input	Al1-GND	Analog input Al1	Select input voltage range, polarity and other functions with function code in F4 group.	Input voltage: $0 \sim 10 \mathrm{~V} \text {, }$ Input current: $0 \sim 20 \mathrm{~mA}$
	AI2-GND	Analog input Al2		
Analog output	AO1-GND	Multifunctional analog output AO1	The programmable voltage/current signal output terminal has 45 kinds of monitoring status to be selected by programming. See Reference Table for Monitor Variables for detail. For JP1, current/voltage output is selected (see DIP Switch Jumper Selection in 4.3.3 for detail)	Current output: $0 \sim 20 \mathrm{~mA}$ Voltage output: $0 \sim 10 \mathrm{~V}$
Power supply	GND	Common terminal of analog signal		
	VS—GND	+10V reference power supply	External signal reference source	Maximum current : 10 mA

Wiring method of multifunctional input and output terminal
Use the input mode with internal inverter 24VDC, and external input terminal being NPN leak-type (connect PLC and +24 V terminal with conductor):

Use the input mode with internal inverter 24VDC, and external input terminal being NPN source type (connect PLC and COM terminal with conductor):

Use the input mode with external power supply（5－28VDC）and external input terminal being NPN leak－type：

Use the input mode with external power supply（5－28VDC）and external input terminal being NPN source－type：

4．3．3 WIRING CAUTIONS FOR THE STANDARD INTERFACE CARD

Three shifts available for JP1 dial switch：
VO1：indicating AO1 terminal output voltage signal； OFF：Indicating AO1 terminal is suspended in mid air； CO1：Indicating AO1 terminal output current signal．

4．4 WIRING OF MAJOR TERMINAL

4．4．1 TERMINAL FUNCTIONS

Terminal symbols	Functions	Terminal symbols	Functions
$\mathbf{P +}$	DC side voltage positive terminal	$\mathbf{P B}$	DC braking resister can be connected between P＋and PB
$\mathbf{P -}$	DC side voltage negative terminal， Bus voltage input terminal of DC braking unit can be connected between P＋and P－	\mathbf{E}	Grounding terminal
$\mathbf{R , S}, \mathbf{T}$	Connect three－phase AC power supply of grid	$\mathbf{U , V , \mathbf { w }}$	Connect three－phase AC motor

4.4.2 WIRING OF MAJOR TERMINAL AND TERMINAL BLOCKS

Class I Applicable type: A510-4T0011H ~ A510-4T0055H

Class II Applicable type: A510-4T0075H ~ A510-4T0110H

Class III Applicable type: A510-4T0150H
Energy consumption braking resistor

Class IV Applicable type: A510-4T0185H ~ A510-4T0220H

Class V Applicable type：A510－4T0300H～A510－4T0550H

4．5 CONNECTION WIRING OF BASIC OPERATION

Applicable type：A510－4T0011H \sim A510－4T1320H

Figure 4－3 Basic wiring diagram for A510 series frequency inverter

5. BASIC OPERATION AND RUNNING OF FREQUENCY INVERTER

5.1 BASIC FUNCTION OF PANEL

The LCD operating panel comes standard with all 7100 series frequency inverters. It is used for parameter setting, status monitoring and controlling the operation of the inverter. Aside from basic start and stop control, the operating panel of the inverter mainly has following three functions: monitoring of status parameters, modification of parameter settings and displaying these parameters in an easy to read format. The operating panel has three modes of operation: monitoring mode, parameter modification mode and graph display mode.

5.1.1 DESCRIPTION OF OPERATING PANEL

When it is initially powered on, the main display shows the text "SUNFAR", and also statically shows the inverter's model (e.g. "A510-4T0022H"), product series number (e.g: sn.20110201022), and software version (e.g. 7000). Then the unit will turn to normal status show in 3 second. At this time, the operation parameters shown on the operating panel are determined by the internal parameters [F0.0.12] and [F0.0.13] of the inverter. The operating panel will return to normal monitoring mode if no keys are pressed within 1 minute at any state.

The LCD operating panel consists of LED indicator, navigation buttons and LCD display, and its appearance is as shown in following figure.

1. Description of buttons

Please refer to Table 5-1 for the functions of the buttons on the panel.
2. Description of the indicators

There are totally eight LED indicators on the operating panel, four of which are used for unit combination and the other four are used for indicating function combination. LED indicators may be on, off or flashing at different state. Please refer to Table 5-1 for the functions.

Table 5-1 Functions of Keys

Items		Functions
Display function	LCD display area	Displays the current operating status parameters and set parameters of the inverter.
	A, Hz, V, \%	$\mathrm{A}, \mathrm{Hz}, \mathrm{V}$ displays the corresponding measurement unit of the data of the main digital display. \% displays compound unit. The compound unit indicator is defined as follows: $\mathrm{Hz}+\mathrm{A}=\mathrm{RPM} ; \quad \mathrm{V}+\%=\mathrm{Sec} . ; \quad \mathrm{A}+\mathrm{V}=\mathrm{Min} .$
	FWD, REV	Indicator for operating status, its flicker shows the frequency inverter is in F/R operation and has voltage output.
	PANEL/REMOTE	The indicator is off: The external terminal command is valid; The indicator is on: the operation panel command is valid; The indicator is flashing: the communication interface (or expanded communication board or expanded function board) command is valid.
	ALARM	The indicator is on: the frequency inverter is in warning status. It shall check up and eliminate abnormalities; otherwise, the frequency inverter may be faulty and shut down.
Keyboard function	FWD	Forward operation command key. Press this key to send forward operation command when the operation command channel of the frequency inverter is set as operation panel control ([F0.3.33]) or [F0.3.34] =0).
	$\begin{array}{\|c\|} \hline \text { REV } \\ \hline \text { JOG } \\ \hline \end{array}$	Reverse/inching operation command key. - Press this key to send reverse operation command when the reverse function ([FF.4.42=\# \# \# 0]) is selected and the operation command channel of the frequency inverter is set as operation panel control ([F0.3.33] or[F0.3.34]=0). - Press this key to send inching operation command when inching function ([FF.4.42=\# \# \# 1])is selected.
	$\begin{array}{\|c\|} \hline \text { STOP } \\ \hline \text { RESET } \\ \hline \end{array}$	Stop/reset key. When this key is pressed in operating status, the frequency inverter will shut down as per set mode; And when pressing this key in fault conditions, the frequency inverter will reset and return to normal stopped status. Keys can be locked or functions can be changed by users (refer to Functional Parameter F0.011).
	ESC	Return key. At any status, it will return to the status of last level till normal monitoring mode by pressing this key.
	MODE	Mode key. Switch display function parameter set and monitoring parameter set in parameter modification status. The corresponding "EROM stored value", "value at this time of energizing" and "panel backup value" of the current function code will be displayed at auxiliary display by pressing this key.
		Data modification key. Used to mofidy function code or parameter. If digital setting mode is set currently, the digital setting value can be modified directly by using this key in normal monitoring mode.
		Left shift key. At any status using $\langle\Delta \nabla$ key to modify data, the modified data bit can be selected from right to left by pressing this key and the modified bit is at the selection status and flashes.

Keyboard function	Δ	Right shift key. At any status using $\Delta \Delta$ key to modify data, the modified data bit can be selected from left to right by pressing this key and the modified bit is at the selection status and flashes.
	$\frac{\text { PANEL }}{\text { REMOTE }}$	Local, terminal and communication control function switch key. The keyboard control, external terminal control and communication control functinos can be swithced with each other through setting [F0.0.11]=\#1\#\# (the switch status is not stored and lost after power down).
		Shuttle selection key. Adjust data after addition in clockwise rotation and adjust data after subtraction in counterclockwise rotation. When [F0.0.25]=3, select panel shuttle setting.
	OK	Ok key. Confirm the current status and parameters (the parameters are stored in the internal memory) and enter into next-level function menu.

5.2 BASIC FUNCTIONS AND OPERATING METHODS OF PANEL

5.2.1 BASIC FUNCTIONS OF KEYPAD

The operation panel also has the following special functions on top of the basic functions of forward / reverse operation, inching operation, shut down, fault reset, parameter modification and query and operating status parameter monitoring.

1. Parameter copy and read/backup (parameter upload)

This operation panel allows for copying the internal parameters of the frequency inverter to the operation panel (only the internal parameters opened to users) and storing permanently. Therefore, users can backup their typical setting parameters to the operation panel for emergency. The backup parameters in the operation panel do not influence the operation of the frequency inverter and can be checked and modified separately.

When [F0.0.08] =\# \# \# 1, the keyboard will begin to read the internal parameters of the frequency inverter and the operation panel will display the process of reading parameters in real time. The LCD display shows "parameter uploading", and after backup of parameters, the LCD display shows "Prameter uploading completed", and the display mode will be automatically resumed to the normal status monitoring. During parameter backup, the operation can be stopped at any time by pressing $\frac{\operatorname{singp}}{R 2 \in S E T}$ key and the display will switch to normal monitoring mode. If alarm information is occurred, please refer to Chapter 8.

2. Parameter copy/write in (parameter download)

This operation panel allows for copying the backup parameters to the internal memory of the frequency inverter (only the internal parameters opened to users) and users can write in their typical setting parameters backed up in the operation panel into the frequency inverter at one time without separate modification.

When the frequency inverter set F0.0.08 as \# \# 12 or \#\# 13 in stopped mode, the keyboard will begin to copy the backup parameters to frequency inverter and the operation panel will display the process in real time. The LCD display shows "parameter downloading", and after backup of parameters, the LCD display shows "Prameter downloading completed", and the display mode will be automatically resumed to the normal status monitoring.

During parameter copying, the operation can be stopped at any time to abandon the copied parameters by pressing $\xlongequal[\substack{\text { siop } \\ \operatorname{kRSET}}]{ }$ key and the display mode will switch to normal monitoring mode. If alarm information is occurred, please refer to Chapter 8.

3. Check and modification of internal parameters

In normal monitoring mode, the internal parameters of the frequency inverter can be checked and modified as per general methods by pressing MODE key. LCD display has the picture display function, allowing for viewing the funtional pictures ser by F0.0.12 main monitoring parameter at any time.

4. Check and modification of panel backup parameters

In normal monitoring mode, the backup parameters in the operation panel can be checked and modified by pressing EsC and MODE key simultaneously (double key compound use). The LCD display prompts: The first line shows the current operation status: Setting of panel parameters; and the second line shows the current function code and set parameters, to indicate that those currently inquired and modified are backup parameters. The modification methods of backup parameters are the same as that of internal parameters.

5. Locking and unlocking of panel

(1) Locking: part of or all the keying functions of the panel can be locked through setting the application parameter F0.0.11. If the parameter is set as panel locking mode, the panel will be locked immediately after the frequency inverter is energized.
(2) Unlocking: the panel will be unlocked for 5 minutes temporarily by pressing OK and maintaining and pressing $\langle\leqslant$ twice in order within 5 seconds and it will automatically recover to locking if there's no keying within 5 minutes.

> To unlock the panel thoroughly, the panel locking parameter [F0.0.11] should be modified into "unlocked" status during the temporary unlock of the panel.

6. Key function

Key function is limited by the application parameter F0.0.11. In function enabling and "normal monitoring mode", press $\underset{\substack{\text { Ratal } \\ \text { Ramit }}}{ }$ key to switch the operation command channel in order "operation panel \longrightarrow
 command channel which will be valid by pressing OK within 3 seconds. It will abandon the switch and return to original status by pressing Esc or without pressing OK within 3 seconds.

The operation command channel switched by this function is not stored permanently. It will recover to original setting after the frequency inverter is power down and restarted. Relevant application parameters of the frequency inverter should be modified to permanently change the command channel.
> When switching command channel, if the original setting is "operation panel" or "local terminal", the "communication interface" will be defaulted as local MODBUS field bus.

5.2.2 OPERATING METHODS OF PANEL

- Query for status parameters (e.g.)

Figure 5-1 Query for status parameters

- Parameter query and modification (example.)

Figure 5-2 Parameter check and modification

Remark: in this status, the auxiliary display column will display the following in turn by pressing MODE key repeatedly.

Default auxiliary monitoring parameters (original state) \longrightarrow EROM regional numerical value \longrightarrow parameter values at initial energizing \longrightarrow backup parameters in operation panel, the numerical value will flicker when "EROM regional numerical value", "parameter values at initial energizing" and "backup parameters in operation panel" are displayed.

- Backup parameter query and modification on the panel (example)

Figure 5-3 Panel backup Parameters check and modification

5.3 BASIC RUNNING OF FREQUENCY INVERTER

5.3.1 OPERATION PROCESS

| Process | Operations
 Installation and operating
 environment | Install frequency inverter in an environment which
 complies with the products technical specification.
 consider ambient conditions (temperature,
 humidity, etc.) and heat dissipation of frequency
 inverter, etc. |
| :--- | :--- | :--- | Refer to Chapter 1 and 3

Process		Operations	References
Automatic learning		The automatic learning for motor parameters should be conducted before selecting vector control mode for the first operation so as to get accurate electric parameters of the controlled motor. If the motor is rotating, please conduct after the motor is completely stopped.	Refer to F2.2.53 parameter set for parameter determination
Set operation control parameters	General parameters	Correctly set direction of rotation, acceleration time, deceleration time, starting frequency, starting mode, acceleration and deceleration mode and stop mode, etc. As per the operating conditions of driving system.	Refer to F0.0.17 parameter set, F0.1.20~F0.1.24 parameter set, F0.4.37~F0.4.52 parameter set for starting and stopping, and F1.0.00~F1.0.10 parameter set for acceleration and deceleration characteristics
	Vector control	Adjust the parameters of regulator in accordance with load conditions, if necessary, set torque control and limit parameters. For vector control with PG, make sure to correctly set the parameters of encoder.	Refer to F8.0.01~F8.0.15 parameter set for rotating speed setting and feedback
Empty-load commissioning inspection		Empty-load motor; start the frequency inverter with keyboard or control terminals; Inspect and confirm the operating conditions of driving system; Motor: stable operation, normal rotation, correct direction, normal acceleration and deceleration process, no abnormal vibration, noise and smell. Frequency inverter; Normal display data of operation panel, normal operation of fan, normal sequence of operation of relay, no vibration and noise, etc. If there are abnormalities, please stop and inspect immediately.	Refer to Chapter 3 and 5
Commissioning inspection with load		Connect the load of driving system after normal empty-load commissioning. Start the frequency inverter with keyboard or control terminal and gradually increase load. When the load is increased to 50% and 100%, operate the system for a period of time respectively to inspect whether the operation of the system is normal or not. It shall inspect overall during operation and observe whether there are abnormalities, or it shall stop and inspect immediately.	Refer to Chapter 3 and 5
Basic operation		The frequency inverter can carry out such basic operations as general starting, running, stopping and F/R, etc.	Refer to Chapter 3 and 5

Process	Operations	References	
		$\begin{array}{l}\text { Frequency conversion operation can be set } \\ \text { as single cycle execution or recycle } \\ \text { execution. One cycle process includes 15 } \\ \text { execution phases whose operating } \\ \text { frequency, acceleration and deceleration } \\ \text { time, operating time and direction, etc can be } \\ \text { set separately. }\end{array}$	$\begin{array}{l}\text { Refer to } \\ \text { F6.0.00~F6.0.14 parameter } \\ \text { set for multi-frequency setting } \\ \text { function, }\end{array}$
F6.0.15~F6.0.45 parameter			
set for simple and			
programmable multi-section			
operation function			

5.3.2 INITIAL SETTING OF FREQUENCY INVERTER

1. Selection of control mode

A510 frequency inverter has five control modes: vector control without PG, vector control with PG, torque control, V/F control and V/F separate control. The operation control mode is selected by the application parameter F0.0.09.

- Mode 0

Vector control without PG, i.e. Vector control without velocity sensor, also called open loop vector control. It is applicable to the place where encoder is not installed, has higher requirement to starting torque and speed control precision and the normal V/F control mode can not satisfied.

- Mode 1

Vector control with PG, i.e. Vector control with velocity sensor, also called closed loop vector control. It is applicable to the place where faster response of torque and higher control precision is required.

- Mode 2

V/F control mode. Aside from normal V/F control application, it can also be applied to the occasions where a single inverter is used to drive multiple motors in parallel.

The control modes of frequency inverter vary from the type and control requirements of motor and set by parameter F0.0.09=\# \# \# \#. For instance, the field where three-phase asynchronous motor is used can be selected through setting F0.0.09=\# \# \# 0 and the field where the control precision is highly required with velocity sensor can be set F0.0.09=\# \# 1 \# speed closed loop vector control mode.

- Mode 3

V/F separate control mode. It is applicable to some special equipment (e.g. torque motor). Under this control mode, the output voltage and output frequency of the frequency inverter are not related and set by the user itself. It should be especially noticed that, this mode is not applicable to common asynchronous motors, variable frequency inverter and permanent magnet synchronous motor; Otherwise the equipment may be damaged if it is forcibly set in this mode.

- Mode 4

Torque control. It can be acquired in the open-loop vector mode and closed-loop vector mode, and is selected via parameter F8.3.39.
2. Selection of frequency input channel (F0.1.16 and F0.2.25, F0.2.26, F0.2.29 and F0.2.32)

A510 frequency inverter has two frequency channels to select parameters with 31 frequency setting modes for each of the channel (refer to parameter F0.2.25, F0.2.26). The two channels can both work independently and set in combination (refer to F0.1.16 parameter). For instance, if F0.1.16 is set as frequency setting channel 1 which is valid separately and F0.2.25 is set as 2 valid panel digital setting (maintaining after stopping and storing after power down), the frequency setting of the frequency inverter will be determined by F0.2.29.

3. Operation command input channel ([F0.1.15], [F0.3.33],[F0.3.34])

A510 frequency inverter has 2 control command channels to select parameters with 4 control command forms for each of the channel (refer to F0.3.33, F0.3.34). The two control commands can be selected through external terminal (refer to DI function selection table for multifunctional terminal). For instance, when this parameter is set as [F0.1.15] $=0$ (control command 1 is valid) and $F 0.3 .33$ is set as 0 operation panel command is valid, the start-stop control of the frequency inverter will be completed by FWD and

5.3.3 SIMPLE OPERATION

> It is absolutely forbidden to connect the power cord to the output $\mathrm{U}, \mathrm{V}, \mathrm{W}$ of the frequency inverter.

5.3.3.1 SIMPLE WIRING DIAGRAM

Figure 5-4 Wiring for the operation of SVC mode

Figure 5-5 Wiring for the operation of VC mode

5.3.3.2 SVC (NON-INDUCTIVE VECTOR) OPERATION

Take 7.5KW frequency inverter which drives 7.5 KW three-phase AC asynchronous motor as the example to indicate the operation process. The name plate parameters of the motor are:

Use operation panel to conduct digital frequency setting and start-stop control.

1. Connect as per Figure 5-3;
2. Power on after making sure the wiring is correct;
3. Set parameters as follows:
[F0.0.09]=0000 (Noninductive vector control)
[F0.0.00]=0001 (Apply macro parameters, set as panel operation digital setting for shortcut)
[F 2.0 .00]=7.5 (Rated power of motor)
[F2.0.01] $=380$ (Rated voltage of motor)
[F2.0.02]=15.4 (Rated current of motor)
[F2.0.03]=50.00 (Rated frequency of motor)
[F2.0.04]=1440 (Rated speed of motor)
4. Press FWD key to start frequency inverter. If the name plate parameters (F2.0.00~F2.0.04) of the motor are modified in (3), the primary static parameter identification will be started automatically, the frequency inverter will output 0 frequency and the auxiliary display column will display the current output current (not limited by F0.0.13 at this time). When the display current is stable as 0.0 , the automatic learning is finished and operation is started;
5. Press Δ key to increase set frequency, where the output frequency of the frequency inverter will be increased and the speed of motor will accelerate;
6. Observe the operation of motor, if there are abnormalities, stop it immediately and power off and re-operate it after finding out the causes;
7. Press \curvearrowright key to reduce set frequency;

5.3.3.3 VC (INDUCTIVE VECTOR) OPERATION

The following parameters also need to be set except the above set parameters required by SVC operation. The wiring diagram is as shown in Figure 5-4.
[F0.0.09]=0010 (inductive vector control)
[F8.0.04]=0 (speed feedback channel)
[F8.0.05]=1000 (pulse of encoder per revolution)
[F8.0.06] if F/R periodic vibration is occurred in starting, this parameter shall be set as 1 (or exchange the wiring of A, B pulse); Other operations are the same as that of SVC operation.

If the motor is completely empty-load, slight oscillation may occur sometimes in the operation under high carrier frequency. At this time, please reduce the setting value of the carrier frequency. (Parameter [F1.1.13]).

6. FUNCTIONAL PARAMETER TABLE

6.1 EXPLANATIONS

1. The symbols in the Table are explained as below:

- " \times " indicates that the set value of the parameter cannot be changed when the inverter is running
- " $\underset{\sim}{ }$ " indicates the parameter is relevant with the model of the inverter.
- "R" indicates the parameter is just for reading and cannot be changed;
- "R/I" indicates the parameter is just for reading and cannot be changed, but can be cleared by initialization
- "-" indicates the parameter is relevant with the type or status of connected accessories.

2. Variables: (H) - hexadecimal number; only bitwise data change is permitted (carry bit is not allowed), and the upper and lower limit for bitwise change.

6.2 FUNCTION TABLE

6.2.1 SYSTEM MANAGEMENT PARAMETER

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F0.0.00	Quick Setup Mode	```_- _ X: Control Method (0~F) 0: Void (customized setting) 1: Keypad Control (via buttons) (default) 2: Keypad Control (via wheel) 3: 2 Wire Control 1 (AT1 setting) 4: 2 Wire Control 2 (AT1 setting) 5: 3 Wire Control (AT1 setting) -_ \(X_{-}\): Reserve \({ }_{-} X_{-}\): Reserve \(X_{-\quad \text { _ }}\) Load Type (0~F) 0: Constant Torque Load 1: Variable Torque Load (eg. fans and pumps)```	1	0000	\times
F0.0.01	Parameter Setting and Modification (H)	\qquad X: Parameter Display Options 0: Display all parameters 1: Display effective configuration parameters 2: Display parameters different from factory default 3: Display modified and stored parameters after power-on this time 4: Display modified and un-stored parameters after power-on this time _ _ X_: Saving Modified Parameters 0: Effective and permanently stored after modification 1: Effective after modification but not stored, and getting lost after power-off X \qquad : Reserve X \qquad : Parameter Batch Recover Store 2: Abandon modifying all un-saved parameters	1	0001	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
		(restoring to original value) 5: Batch storing all modified and un-saved parameters 9: Resume all parameters to initial values at the last power-on			
F0.0.02	Password to Change Control Mode	0~65535 (1580)	1	0	\times
F0.0.03	Select Language for Text Display	0: Chinese 1: English	1	0	
F0.0.04	LCD Display Settings (H)	_ _ X: Contrast 0~7 _ _ X _: Status Display 0: Steady mode 1: Single parameter display 2: Dual parameters display 3: Three parameters display	1	0023	-
F0.0.05	Parameter Security (H)	__ _ X: Access to Parameters 0 : All parameters are permitted to be modified 1: Except for this parameter, frequency digital setting, PID digital setting, revolution digital setting, torque digital setting, locking password parameter (F 0.0 .06), other parameters are forbidden to be modified. 2: All parameters are forbidden to be modified except for this parameter and the locking password. X _: Security Coded Parameter Lock 0 : Void 1: Effective - once the password is set, this parameter cannot be modified unless correct password is entered.	1	0000	
F0.0.06	Security Code	0~65535	1	0	
F0.0.07	Factory Reset	0: No action 1: Factory Reset parameter groups F0>F9 2: Factory Reset parameter groups $\mathrm{F} 0>\mathrm{FA}$ 3: Factory Reset parameter groups $\mathrm{F} 0>\mathrm{FB}$ 4: Factory Reset parameter groups F0>FC 5: Factory Reset parameter groups F0>FD 6: Factory Reset parameter groups F0>FE 7: Factory Reset parameter groups F0>FF 8: Delete Fault Log	1	0	\times
F0.0.08	Parameter Transfer(H)	__ _ X: Upload and Download 0: No action 1: Parameter upload 2: Parameter download 3: Parameter download (except for motor prameter/F2 Group)	1	0000	x

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
		＿－X＿：Allow Local Upload 0：Parameter download forbidden 1：Parameter download permitted			
F0．0．09	Motor Design and Control Selection （H）	－－－X：Motor 1 Type Selection 0：Induction asynchronous motor 1：conical motor 2：Permanent magnet synchronous motor ＿＿X＿：Motor 1 Control Mode 0：SVC mode／open－loop vector control 1：VC mode／closed－loop vector control 2：V／F control 3：V／F separate control X＿＿：Motor 2 Type Selection 0 ：Induction asynchronous motor 1：AC asynchronous servo motor 2：Permanent magnet synchronous motor X \qquad ：Motor 2 Control Mode 0：SVC mode／open－loop vector control 1：VC mode／closed－loop vector control 2：V／F control 3：V／F separate control	1	0000	\times
F0．0．10	Motor selection	0 ：Motor 1 1：Motor 2 2：Select Motor 1 or 2 via terminal （Function No．41）	1	0	\times
F0．0．11	Keypad Operation （H）	\qquad X：Keypad Locking 0 ：No locking 1：All keys are locked except for UP／DW（Shuttle）， STOP and RUN． 2：All keys are locked except for STOP and RUN 3：All keys are locked except for STOP． 4：Lock all keys ＿－X_{-}：STOP Button Function 0：Non－panel control mode void 1：Press STOP key in any control mode to stop the device slowly 2：Press STOP key in any control mode to stop the device freely \qquad ：PANEL／REMOTE Button Function 2：Continuously effective X \qquad ：Reserve	1	0000	\times
F0．0．12	Main Monitoring Option（H）	d0．0～d0．55／d1．0～d1．55	1	d0．00	
F0．0．13	Auxiliary Monitoring Option 1	d0．0～d0．55／d1．0～d1．55	1	d0．02	
F0．0．14	Auxiliary Monitoring Option 2	d0．0～d0．55／d1．0～d1．55	1	d0．09	

6.2.2 SELECTION OF RUNNING COMMANDS

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F0.1.15	Control Place Selection	0: Control Place 1 On 1: Control Place 2 On 2: Select control place via input terminal (Function NO. 11)	1	0	
F0.1.16	Frequency Source Selection	0 : Channel 1 Hz setting 1: Channel 2 Hz setting 2: Select Channel 1 or 2 via input term (Function No. 12) 3: Selected via Control Place Selection : Channel 1 + Channel 2 Channel 1 amplified by Channel 2 Channel 1 - Channel 2 Channel 1 reduced by Channel 2 8: Channel 1 reduced by Channel 2 9: Highest value Channel 1 OR Channel 2 10: Lowest value Channel 1 OR Channel 2 11: $\sqrt{ }$ (Channel 1) $+\sqrt{ }$ (Channel 2) 12: $\sqrt{ }$ (Channel $1+$ Channel 2) 13: (Channel1 x Scaling1) + (Channel 2 x Scaling2) 14: (Channel1 x Scaling1) + (Channel $2 x$ Scaling2)	1	0	
F0.1.17	Direction of Rotation (H)	\qquad X: Direction Switching 0: Void 1: Negate _ _ X_JOG Direction Locking 0 : Void (determined by the direction command) 1: FWD locking 2: REV locking	1	0000	
F0.1.18	Channel 1 Scaling Factor	0.01~100.00	0.01	1.00	
F0.1.19	Channel 2 Scaling Factor	0.01~100.00	0.01	1.00	
F0.1.20	Maximum Output Frequency	$10.00 \sim 320.00 \mathrm{~Hz} / 100.0 \sim 3000.0 \mathrm{~Hz}$	0.01	60.00	
F0.1.21	Upper Limit Frequency	[F0.1.22] Min.(300.00Hz,[F0.1.20])	0.01	50.00	
F0.1.22	Lower Limit Frequency	$0.0 \mathrm{~Hz} \sim[\mathrm{FO} 0.1 .21]$	0.01	0.0	
F0.1.23	FWD Jog Frequency	$0.0 \mathrm{~Hz} \sim[\mathrm{FO} 0.1 .21]$	0.01	10.00	
F0.1.24	REV Jog Frequency	$0.0 \mathrm{~Hz} \sim[\mathrm{FO} 0.1 .21]$	0.01	10.00	

6.2.3 FREQUENCY SETTINGS

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F0.2.25	Frequency Setting Channel 1	0: Keypad Entry 1 (keep value when stopped) 1: Keypad Entry 2 (go to zero when stopped) 2: Keypad Entry 3 (keep value at power off)		2	
F0.2.26	Frequency Setting Channel 2	4: Remote UP/DW 1 (keep value at power off) 5: Remote UP/DW 2 (go to zero when stopped) 6: Remote UP/DW 3 (keep value at power off) 7: Remote UP/DW Bipolar Setting 1 (keep bipolar when stopped) 8: Remote UP/DW Bipolar Setting 2 (keep at power off) 9: Analog input 1 (Al1, 0-10VDC) 10: Analog input 2 (Al2, 4-20mA) 11: Analog input 3 (AI3, 0-10VDC) 12: Al1 Bipolar setting (-10 V to +10 V) 13: Al3 Bipolar setting (-10 V to +10 V) 14: Pulse Follower Input 15: Pulse Follower Bipolar Input 16: MODBUS Communications1 Relative 17: MODBUS Communications2 Absolute 18: Al1+AI2 19: Al2+Al3 20: Al2+Pulse Input 21: (Al1 x Al2) / full scale of Al2 22: AI1/AI2 23: Standard PID Output 24: High Speed PID Output 25: Disturbed Running Frequency 26: Auto Preset Speeds 27: Preset Speeds via terminals 28: Simulated Analog Input SAI1 29: Simulated Analog Input SAI2 30: Comms Ext card1 Relative 31: Comms Ext card1 Absolute In the case of V/F separate control, F0.2.25 changes to frequency giving channel, and F0.2.26 changes to voltage giving channel.	1	0	
F0.2.27	Min Frequency Channel 1	0.0~[F0.2.28]	0.01	0.0	
F0.2.28	Max Frequency Channel 1	[F0.2.27]~[F0.1.21]	0.01	50.00	
F0.2.29	Keypad Incremental Value Channel 1	0.0~[F0.2.28]	0.01	0.0	
F0.2.30	Min Frequency Channel 2	0.0~[F0.2.31]	0.01	0.0	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F0.2.31	Max Frequency Channel 2	[F0.2.30]~[F0.1.21]	0.01	50.00	
F0.2.32	Keypad Incremental Value Channel 2	$0.0 \sim[F 0.2 .31]$	0.01	0.0	

6.2.4 CONTROL COMMAND SOURCE

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F0.3.33	Control Place 1	0: Running command 1: External control terminals 2: MODBUS Exp card 3. BUS Exp card	1	0	
F0.3.34	Control Place 2		1	0	
F0.3.35	External Control Quick setup (H)	\qquad X: Control Command 0 : Two-line mode 1 1: Two-line mode 2 2: Three wire mode 1 3: Three wire mode 2 _ - X_{-}: Command First Starting Mode 0 : Running signal level starting 1: Running signal rising edge starting (two-line mode 1 and 2) X \qquad : Reserve X \qquad : Reserve	1	0000	\times

6.2.5 START AND STOP

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F0.4.37	Start Run Control Interlock (H)	_ _ _ X: Start Allowed When 0: Function closed 1: Permitted when the multifunctional terminal is effective (Function No. 42) 2: Command word from standard fieldbus (standard expansion card) 3. Command word from expansion communication module $X_{\text {_ }}$ Reserve - \qquad : Running Allowed When 0: Function closed 1: Permitted when the multifunctional terminal is effective (Function No. 43) 2: Command word from standard fieldbus (standard expansion card) 3: Command word from expansion communication module X \qquad : Stop Method 0: Free stop 1: Deceleration stop	1	0000	\times

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F0.4.38	Start and Stop Methods (H)	_ _ _ X: Start Method 0: Normal start 1: Revolution tracking start - - X X _: Reserve _ X \qquad : Stop Method 0 : Deceleration stop 1: Free stop \qquad : Reserve	1	0000	×
F0.4.39	Start Frequency	$0.0 \sim 50.00 \mathrm{~Hz}$	0.01	0.50	
F0.4.40	Start Frequency Hold Time	0.00~10.00Sec.	0.01	0.0	
F0.4.41	Start Pre-excitation Current	0.0~100.0(\%)	0.1	35.0	
F0.4.42	Start Pre-excitation Time	0.00~10.00Sec.	0.01	0.10	
F0.4.43	Start Delay	0.00~100.00Sec.	0.01	0.0	
F0.4.44	DC Injection Brake Control	_ _ _ X: DC Injection Braking Function 0: Closed 1: Open	1	0	
F0.4.45	DC Injection Brake Application Frequency	0.0~[F0.1.21]	0.01	2.00	
F0.4.46	DC Injection Braking Application Time	0.0~10.00Sec.	0.01	0.0	
F0.4.47	DC Injection Braking Current Level	0.0~100.0(\%)	0.1	50.0	
F0.4.48	Restart After Power Interruption	0: Forbidden 1: Effective	1	0	
F0.4.49	Restart Delay Time	0.1~10.0Sec.	0.1	0.5	
F0.4.50	Direction Change Delay Time	0.00~5.00Sec.	0.01	0.0	
F0.4.51	Direction Change Start Hz	0: Switch at zero point 1: Start frequency switch	1	0	
F0.4.52	Zero-speed Detection Level	0.00~100.00Hz	0.01	0.10	
F0.4.53	Zero-speed Delay Time	0.00~10.00Sec.	0.01	0.05	
F0.4.54	Emergency Stop Method (EMS)	0: Emergency Stop By Deceleration 1: Emergency Stop by Coast To Stop	1	0	

6．2．6 ACCELERATION AND DECELERATION PARAMETERS

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F1．0．00	Acceleration and Deceleration Modes	\qquad X：Accel Decel Mode 0 ：Liner acceleration and deceleration 1：S curve acceleration and deceleration \qquad X＿：Accel And Decel Unit 0：Sec．（Second） 1：Min．（Minute）	1	0000	\times
F1．0．01	\％of S－curve At The Bottom	5．0～100．0－［F1．0．02］	0.1	15.0	
F1．0．02	\％of S－curve At Mid Section	20．0～100．0－［F1．0．01］	0.1	70.0	
F1．0．03	Acceleration Time 1	0．01～ 600.00 （Sec．／Min．）	0.01	ふ	
F1．0．04	Deceleration Time 1	0．01～ 600.00 （Sec．／Min．）	0.01	ふ	
F1．0．05	Acceleration Time 2	0．01～600．00（Sec．／Min．）	0.01	ふ	
F1．0．06	Deceleration Time 2	0．01～ 600.00 （Sec．／Min．）	0.01	\％	
F1．0．07	Acceleration Time 3	0．01～ 600.00 （Sec．／Min．）	0.01	ふ	
F1．0．08	Deceleration Time 3	0．01～600．00（Sec．／Min．）	0.01	H	
F1．0．09	Acceleration Time 4 ／ JOG	0．01～600．00（Sec．／Min．）	0.01	H	
F1．0．10	Deceleration Time 4 ／ JOG	0．01～600．00（Sec．／Min．）	0.01	\cdots	
F1．0．11	Emergency Stop Deceleration Time	0．01～600．00（Sec．／Min．）	0.01	W	
F1．0．12	Reserve				

6．2．7 CARRIER FREQUENCY

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F1．1．13	Carrier Frequency	1．5～15．0KHz（relevant with the model）	0.1	＊	
F1．1．14	Carrier Frequency Tuning		1	0111	

6.2.8 VIF PARAMETERS AND OVERLOAD PROTECTION FOR MOTOR 1

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F1.2.15	Rated Frequency of Motor 1	$5.00 \sim 300.00 \mathrm{~Hz}$	0.01	50.00	\times
F1.2.16	Rated Voltage of Motor 1	$50 \sim 500 \mathrm{~V}$	1	$380 / 220$	
F1.2.17	V/F Curve Selection of Motor 1	$0:$ Customized curve $1: 1.2$ times squares curve $2: 1.5$ times squares curve $3: ~ S e c o n d ~ s q u a r e ~ c u r v e ~$	1	0	\times
F1.2.18	Torque Boost Motor 1	$0.0 \sim 20.0 \%$	0.1	\times	
F1.2.19	V/F Curve 1st Frequency of Motor 1	$0.0 \sim[$ F0.1.21]	0.01	0.0	\times
F1.2.20	V/F curve 1st Voltage of Motor 1	$0 \sim 500 \mathrm{~V}$	0.01	0.0	\times
F1.2.21	V/F curve 2nd Frequency of Motor 1	$0.0 \sim[F 0.1 .21]$	0.1	0.0	
F1.2.22	V/F curve 2nd Voltage of Motor 1	$0 \sim 500 \mathrm{~V}$	0.01	0.0	\times
F1.2.23	V/F curve 3rd Frequency of Motor 1	$0.0 \sim[F 0.1 .21]$	0.1	0.0	
F1.2.24	V/F curve 3rd Voltage of Motor 1	$0 \sim 500 \mathrm{~V}$	1	0	
F1.2.25	Slip Frequency Compensation Motor 1	$0 \sim 150(\%)$	0.0		

6.2.9 VIF PARAMETERS AND OVERLOAD PROTECTION FOR MOTOR 2

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F1.3.27	Rated Frequency of Motor 2	$5.00 \sim 300.00 \mathrm{~Hz}$	0.01	50.00	\times
F1.3.28	Rated Voltage of Motor 2	$50 \sim 500 \mathrm{~V}$	1	380/220	
F1.3.29	V/F Curve Selection of Motor 2	0: Customized curve 1: 1.2 times squares curve 2: 1.5 times squares curve 3: Second square curve	1	0	\times
F1.3.30	Torque Boost Of Motor 2	0.0 ~ 20.0\%	0.1	\cdots	
F1.3.31	V/F Curve 1st Frequency of Motor 2	$0.0 \sim$ [F0.1.21]	0.01	0.0	\times
F1.3.32	V/F curve 1st Voltage of Motor 2	0~500V	0.1	0.0	
F1.3.33	V/F curve 2nd Frequency of Motor 2	$0.0 \sim$ [F0.1.21]	0.01	0.0	\times
F1.3.34	V/F curve 2nd Voltage of Motor 2	0~500V	0.1	0.0	
F1.3.35	V/F curve 3rd Frequency of Motor 2	$0.0 \sim$ [F0.1.21]	0.01	0.0	\times
F1.3.36	V/F curve 3rd Voltage of Motor 2	0~500V	0.1	0.0	
F1.3.37	Slip Frequency Compensation Motor 2	0 ~ 150(\%)	1	0	

6.2.10 STEADY RUNNING

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F1.4.39	Accel / Decel Current Limit Level	120 ~ 200(\%)	1	170	
F1.4.40	Forced Start Current Limit Level	120 ~ 220(\%)	1	170	
F1.4.41	Forced Start Current Time	0.0~5.00Sec.	0.01	0.0	
F1.4.42	Trip Suppression Selection	- - - X X: Over volts Hz Increase 0 : Closed 1: Effective (Frequency increasing suppression) _ _ X _: Under volts Hz Reduction 0 : Closed 1: Effective (Frequency increasing suppression) X \qquad : Over volts Hz Reduction 0: Closed 1: Effective X \qquad : Reserve	1	0111	
F1.4.43	Over volts Trip Level (DC BUS)	660~800V	1	750	
F1.4.44	Over volts Trip Level Gain	0.10~10.00	0.01	1.00	
F1.4.45	Over volts Trip Level (AC Input)	[FF.2.35]~480V	1	400V	
F1.4.46	Over volts Trip Level Gain	0.10~10.00	0.01	1.00	
F1.4.47	Current Limit Trip Level	20~220(\%)	1	200	
F1.4.48	Current Limit Trip Level Gain	0.10~10.00	0.01	1.00	
F1.4.49	Number of Auto Reset Attempts	$0 \sim 5$ (the self-recovery function is deactivated when it is set to 0)	1	0	
F1.4.50	Time Between Auto Resets	0.2~5.0Sec.	0.1	1.0	
F1.4.51	Auto Reset Cycle Time	900~36000Sec.	1	3600	
F1.4.52	Auto reset Selection	_ _ _ X: Over Current 0 : Self resetting forbidden 1: Self resetting permitted X _: Over Voltage 0 : Self resetting forbidden 1: Self resetting permitted X \qquad : Output Grounding 0 : Self resetting forbidden 1: Self resetting permitted X \qquad : Under volts Running 0 : Self resetting forbidden 1: Self resetting permitted	1	0000	
F1.4.53	Display coefficient	0.001~60.000	0.001	1.000	

6．2．11 PARAMETERS OF MOTOR 1

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F2．0．00	Rated Power	0．1～315．0KW	0．1KW	¢	\times
F2．0．01	Rated Voltage	30～480V	1 V	380／220	\times
F2．0．02	Rated Current	0．01～650．00A	0．01A	H	\times
F2．0．03	Rated Frequency	Max\｛5．00，［F2．0．04］／60\}~300.00Hz	0.01 Hz	50.00	\times
F2．0．04	Rated Speed	10～min．\｛30000，60＊［F2．0．03］\}rpm	1 rpm	ふ	\times
F2．0．05	Current Unloaded	0．15＊［F2．0．02］～0．8＊［F2．0．02］	0．01A	む	\times
F2．0．06	Electrical Resistance of Stator	0．01～65000m Ω	＊	N	\times
F2．0．07	Induction of Stator	$0.001 \sim 6500.0 \mathrm{mH}$	$\stackrel{3}{3}$	A	\times
F2．0．08	Total Leakage Inductance	$0.001 \sim 6500.0 \mathrm{mH}$	ふ	＊	\times
F2．0．09	Rotor Time Constant	$5.0 \sim 6500.0 \mathrm{~ms}$	0.1	\star	\times
F2．0．10	Slip Compensation Coefficient	0．50～1．50	0.01	1.00	
F2．0．11	Rated Torque of PMSM	0．1～5000．0NM	0．1NM	↔	\times
F2．0．12	Rated Voltage of PMSM	30～480V	1 V	$\begin{aligned} & \hline 380 \\ & / 220 \end{aligned}$	\times
F2．0．13	Rated Current of PMSM	0．01～650．00A	0．01A	＊	\times
F2．0．14	Rated Frequency of PMSM	$5.00 \sim 300.00 \mathrm{~Hz}$	0.01 Hz	50.00	\times
F2．0．15	Rated Revolution of PMSM	10～60000rpm	1	1500	\times
F2．0．16	Pairs of Poles PMSM	1～32	1	2	\times
F2．0．17	EMS Constant of PMSM	0．010～5．000V／rpm	0.001	0.215	\times
F2．0．18	Torque Coefficient of PMSM	0．10～500．00 Nm／A	0.01	3.00	\times
F2．0．19	Identification Current of PMSM	$\begin{aligned} & 1.0 \sim 80.0 \% * \\ & \text { [F2.0.13] } \end{aligned}$	0.1	20.0	\times
F2．0．20	Stator Resistance of PMSM	$0.01 \sim 65000 \mathrm{~m} \Omega$		ָ	\times
F2．0．21	Vertical Axis Inductance of PMSM	0．001～6500．0mH		N	\times
F2．0．22	Quadrature Axis inductance of PMSM	0．001～6500．0mH		\cdots	\times
F2．0．23	Initial Angle of PMSM	0～65535	1	0	\times
F2．0．24	Z pulse Original Angle	0．0～359．9	0.1	0.0	\times
F2．0．25	Overload Protection Setting Motor 1	50．0～131．0（\％）（131—closed）	0.1	115.0	

6．2．12 VECTOR PARAMETERS OF MOTOR 2

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F2．1．26	Rated Power	0．1～315KW	0．1 KW	认	\times
F2．1．27	Rated Voltage	30～480V	1V	380／220	\times
F2．1．28	Rated Current	0．01～650．00A	0．01A	＊	\times
F2．1．29	Rated Frequency	$\begin{aligned} & \operatorname{Max}\{5.00,[F 2.1 .30] / 60\} \sim \\ & 300.00 \mathrm{~Hz} \end{aligned}$	0.01 Hz	50.00	\times
F2．1．30	Rated Speed	$\begin{aligned} & \text { 10~min.\{30000,60* } \\ & \text { [F2.1.29]\}rpm } \end{aligned}$	1rpm	H	\times
F2．1．31	Current Unloaded	$\begin{aligned} & 0.15^{*}[F 2.1 .28] \sim \\ & 0.8^{\star}[F 2.1 .28] \end{aligned}$	0．01A	i	\times
F2．1．32	Electrical Resistance of Stator	$0.01 \sim 65000 \mathrm{~m} \Omega$	H	H	\times
F2．1．33	Induction of Stator	$0.001 \sim 6500.0 \mathrm{mH}$	む	む	\times
F2．1．34	Total Leakage Inductance	0．001～6500．0mH	＊	＊	\times
F2．1．35	Rotor Time Constant	$5.0 \sim 6500.0 \mathrm{~ms}$	0.1 ms	今	\times
F2．1．36	Slip Compensation Coefficient	0．50～1．50	0.01	1.00	
F2．1．37	Rated Torque of PMSM	0．1～5000．0NM	0.1 NM	方	\times
F2．1．38	Rated Voltage of PMSM	30～480V	1V	380／220	\times
F2．1．39	Rated Current of PMSM	0．01～650．00A	0．01A	む	\times
F2．1．40	Rated Frequency of PMSM	$5.00 \sim 300.00 \mathrm{~Hz}$	0.01 Hz	50.00	\times
F2．1．41	Rated Revolution of PMSM	10～60000rpm	1	1500	\times
F2．1．42	Pairs of Poles PMSM	1～32	1	2	\times
F2．1．43	EMS Constant of PMSM	0．010～5．000V／rpm	0.001	0.215	\times
F2．1．44	Torque Coefficient of PMSM	0．10～500．00 Nm／A	0.01	3.00	\times
F2．1．45	Identification Current of PMSM	1．0～80．0\％＊［F2．1．39］	0.1	20.0	\times
F2．1．46	Stator Resistance of PMSM	0．01～65000m Ω		\＃	\times
F2．1．47	Vertical Axis Inductance of PMSM	0．001～6500．0mH		\％	\times
F2．1．48	Quadrature Axis inductance of PMSM	0．001～6500．0mH		H	\times
F2．1．49	Initial Angle of PMSM	0～65535	1	0	\times
F2．1．50	Z pulse Original Angle	0．0～359．9	0.1	0.0	\times
F2．1．51	Overload Protection Setting Motor 2	50．0～131．0（\％）（131—closed）	0.1	115.0	

$>$ The stator resistance，stator inductance and the resolution of total leakage inductance of asynchronous motors is relevant with different models．

6.2.13 PARAMETER MEASUREMENT AND PRE-EXCITATION

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F2.2.52	Excitation Time For Vector Mode	$0.02 \sim 2.50$ Sec.	0.01	0.50	
F2.2.53	Motor Auto Tune	0: Off 1: Static Identification 2: Static + Running Identification (void for synchronous motor)	1	0	\times

6.2.14 MULTIFUNCTIONAL INPUT TERMINAL

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F3.0.00	Multifunctional Input DI1	0~96	1	0	\times
F3.0.01	Multifunctional Input DI2	0~96	1	0	\times
F3.0.02	Multifunctional Input DI3	0~96	1	7	\times
F3.0.03	Multifunctional Input DI4	0~96	1	8	\times
F3.0.04	Multifunctional Input DI5	0~96	1	13	\times
F3.0.05	Multifunctional Input DI6 Std Ext Card	0~96	1	0	\times
F3.0.06	Multifunctional Input DI7 Std Ext Card	0~96	1	0	\times
F3.0.07	Multifunctional input DI8 Std Ext Card	0~96	1	0	\times
F3.0.08	Multifunctional input DI9/Fin Std Ext Card	0~98	1	97	\times
F3.0.09	Filtering Time - DI1 to DI5	1~50ms	1	5	
F3.0.10	Filtering Time - DI6 to DI9	1~50ms	1	5	
F3.0.11	Multifunctional Input Signal Inversion (H)	_ _ _ X: Terminal DI1-DI4 0~F: 4-bit binary, bit=0 power-on effective, 1 disconnection effective _ _ X _: Terminal DI5-DI8 0~F: 4-bit binary, bit=0 power-on effective, 1 disconnection effective X \qquad : D19 terminal 0~F: 4-bit binary, bit=0 power-on effective, 1 disconnection effective X \qquad : Reserve	1	0000	\times

6.2.15 MULTIFUNCTIONAL OUTPUT TERMINAL

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F3.1.12	Multifunctional Output DO1	0~71	1	1	
F3.1.13	Multifunctional Output DO2	0~71	1	2	
F3.1.14	Multifunctional Output DO3	0~71	1	63	
F3.1.15	Delay Time for DO1 Switching On	0.0~10.00Sec.	0.01	0.0	
F3.1.16	Delay Time for DO1 Switching Off	0.0~10.00Sec.	0.01	0.0	
F3.1.17	Delay Time for DO2 Switching On	0.0~10.00Sec.	0.01	0.0	
F3.1.18	Delay Time for DO2 Switching Off	0.0~10.00Sec.	0.01	0.0	
F3.1.19	Delay Time for DO3 Switching On	0.0~10.00Sec.	0.01	0.0	
F3.1.20	Delay Time for DO3 Switching Off	0.0~10.00Sec.	0.01	0.0	
F3.1.21	Multifunctional Relay Output RO1	0~71	1	4	
F3.1.22	Multifunctional Relay Output RO2	0~71	1	5	
F3.1.23	Delay time for RO1 switching-on	0.0~10.00Sec.	0.01	0.0	
F3.1.24	Delay time for RO1 switching-off	0.0~10.00Sec.	0.01	0.0	
F3.1.25	Delay time for RO2 switching-on	0.0~10.00Sec.	0.01	0.0	
F3.1.26	Delay time for RO2 switching-off	0.0~10.00Sec.	0.01	0.0	
F3.1.27	Monitor 1 Variable selection	$0 \sim 44$ (referring to the monitor variable comparison table)	1	0	
F3.1.28	Monitor 2 Variable selection	$0 \sim 44$ (referring to the monitor variable comparison table)	1	1	
F3.1.29	Monitor 3 Variable selection	$0 \sim 44$ (referring to the monitor variable comparison table)	1	2	
F3.1.30	Lower limit of Monitor 1 Variable	0.0~100.0 (\%)	0.1	0.0	
F3.1.31	Upper Limit of Monitor 1 Variable	0.0~100.0 (\%)	0.1	100.0	
F3.1.32	Lower limit of Monitor 2 Variable	0.0~100.0 (\%)	0.1	0.0	
F3.1.33	Upper Limit of Monitor 2 Variable	0.0~100.0 (\%)	0.1	100.0	
F3.1.34	Lower limit of Monitor 3 Variable	0.0~100.0 (\%)	0.1	0.0	
F3.1.35	Upper Limit of Monitor 3 Variable	0.0~100.0 (\%)	0.1	100.0	

6.2.16 PULSE INPUT

(Configured With Standard Expansion I/O Board, And This Group Of Parameters Are Effective When D19 Selects The Frequency Input Function)

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F3.2.36	Min Pulse Input frequency DI9	$0.0 \sim 100.00 \mathrm{KHz}$	0.01	0.0	
F3.2.37	Max Pulse Input frequency DI9	$0.01 \sim 100.00 \mathrm{KHz}$	0.01	10.00	
F3.2.38	Pulse Detection Cycle	$1 \mathrm{~ms} \sim 20 \mathrm{~ms}$	1	10	
F3.2.39	Encoder Pulse Single Channel	$1 \sim 4096$	1	1024	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F3.2.40	Mechanical Transmission Ratio (=pulse shaft revolution: motor shaft revolution)	$0.010 \sim 10.000$	0.001	1.000	
F3.2.41	Diameter of Driving Wheel	$0.1 \sim 2000.0 \mathrm{~mm}$	0.1	100.0	
F3.2.42	Max Length Counting Value	$10 m \sim 50000 \mathrm{~m}$	1 m	50000	
F3.2.43	Max Linear speed	$0.01 \sim 500.00 \mathrm{~m} /$ Sec.	0.01	10.00	
F3.2.44	Current Length Count Value	$0 \sim 50000 \mathrm{~m}$	1 m	-	R
F3.2.45	Current Linear Speed	$0.0 \sim 500.00 \mathrm{~m} / \mathrm{Sec}$.	0.01	-	R

6.2.17 PULSE OUTPUT

(Equipped With Standard Expansion I/O Board, And This Group Of Parameters Are Effective When DO3 Terminal Selects The Frequency Output Function)

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F3.3.46	Signal Type Pulse Output DO3	0: Frequency Signal 1 ($0.25 \sim 100.00 \mathrm{KHz})$ 1: Frequency signal 2 (10.0~1000.0Hz) 2: Pulse Width Signal (PWM) (reference frequency 0.25 $\sim 100.00 \mathrm{KHz})$	1	0	
F3.3.47	Min Output Frequency DO3	$0.25 \sim 100.00 \mathrm{KHz}$	0.01	10.0	
F3.3.48	Max Output Frequency DO3 / Fout	$0.25 \sim 100.00 \mathrm{KHz} \mathrm{(PWM} \mathrm{signal}$ reference frequency)	0.25		
F3.3.49	Monitored Value Of Pulse Output	$0 \sim 45(M o n i t o r ~ V a r i a b l e ~ C o m p a r i s o n ~$ Table)	1	0	
F3.3.50	Lower limit of DO3	$0.0 \sim[F 3.3 .51]$	0.1	0.0	
F3.3.51	Upper limit of DO3	[F3.3.50]~100.0 (\%)	0.1	100.0	

6.2.18 ANALOG INPUT

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F4.0.00	Al1 Min Value	$0.00 \sim[F 4.0 .01]$	0.01	0.0	
F4.0.01	Al1 Max Value	$[F 4.0 .00] \sim 10.00 \mathrm{~V}$	0.01	10.00	
F4.0.02	Al2 Min Value	$0.00 \sim[F 4.0 .03]$	0.01	4.00	
F4.0.03	Al2 Max Value Analog input AI2 max. $(4 \sim 20 \mathrm{~mA})$	$[F 4.0 .02] \sim 20.00 \mathrm{~mA}$	0.01	20.00	
F4.0.04	Al3 Min Value	$-10.00 \sim[F 4.0 .05]$	0.01	0.00	
F4.0.05	Al3 Max value	$[F 4.0 .04] \sim 10.00 \mathrm{~V}$	0.01	10.00	
F4.0.06	Al1 Filtering Time Constant	$1 \sim 1000 \mathrm{~ms}$	1	10	
F4.0.07	Al2 Filtering Time Constant	$1 \sim 1000 \mathrm{~ms}$	1	10	
F4.0.08	Al3 Filtering Time Constant	$1 \sim 1000 \mathrm{~ms}$	1	10	

6.2.19 ANALOG INPUT CURVE CORRECTION

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F4.1.09	Al1 curve correction point 1	$[F 4.0 .00] \sim[F 4.0 .01]$	0.01	0.0	
F4.1.10	Al1 curve correction value1	$[F 4.0 .00] \sim[F 4.0 .01]$	0.01	0.0	
F4.1.11	Al1 curve correction point 2	$[F 4.0 .00] \sim[F 4.0 .01]$	0.01	10.00	
F4.1.12	Al1 curve correction value 2	$[F 4.0 .00] \sim[F 4.0 .01]$	0.01	10.00	
F4.1.13	Al2 curve correction point 1	$[F 4.0 .02] \sim[F 4.0 .03]$	0.01	4.00	
F4.1.14	Al2 curve correction value 1	$[F 4.0 .02] \sim[F 4.0 .03]$	0.01	4.00	
F4.1.15	Al2 curve correction point 2	$[F 4.0 .02] \sim[F 4.0 .03]$	0.01	20.00	
F4.1.16	Al2 curve correction value 2	$[F 4.0 .02] \sim[F 4.0 .03]$	0.01	20.00	
F4.1.17	Al3 Hysteresis Band Dead Zone	$0.0 \sim 2.00$	0.01	0.10	
F4.1.18	Al3 Curve Correction Point 1	$[F 4.0 .04] \sim[F 4.0 .05]$	0.01	0.0	
F4.1.19	Al3 Curve Correction Value 1	$[F 4.0 .04] \sim[F 4.0 .05]$	0.01	0.0	
F4.1.20	Al3 Curve Correction Point 2	$[F 4.0 .04] \sim[F 4.0 .05]$	0.01	10.00	
F4.1.21	Al3 Curve Correction Value 2	$[F 4.0 .04] \sim[F 4.0 .05]$	0.01	10.00	

6.2.20 ANALOG OUTPUT

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F4.2.22	AO1 Function Selection	$0 \sim 45$ (monitor variable comparison table)	1	0	
F4.2.23	AO2 Function Selection	$0 \sim 45$ (monitor variable comparison table)	1	2	
F4.2.24	AO1 Min Value	$0.00 \sim 10.00 \mathrm{~V}$	0.01	0.0	
F4.2.25	AO1 Max Value	$0.00 \sim 10.00 \mathrm{~V}$	0.01	10.00	
F4.2.26	AO1 Lower Limit Scaling	$0.0 \sim[F 4.2 .27]$	0.1	0.0	
F4.2.27	AO1 Upper Limit Scaling	$[F 4.2 .26] \sim 100.0(\%)$	0.1	100.0	
F4.2.28	AO1 Filtering Time Constant	$0.01 \sim 10.00$ Sec.	0.01	0.10	
F4.2.29	AO1 Output Signal Selection	$0.0 \sim 20.00 \mathrm{~mA}(0.0 \sim 10.00 \mathrm{~V})$	0.01	0.0	
F4.2.30	AO2 Min Value	$0.00 \sim 10.00 \mathrm{~V}$	0.01	10.00	
F4.2.31	AO2 Max Value	$0.00 \sim 10.00 \mathrm{~V}$	0.1	0.0	
F4.2.32	AO2 Lower Limit Scaling	$0.0 \sim[F 4.2 .33]$	0.1	100.0	
F4.2.33	AO2 Upper Limit Scaling	$[F 4.2 .32] \sim 100.0(\%)$	0.01	0.10	
F4.2.34	AO2 Filtering Time Constant	$0.01 \sim 10.00$ Sec.	0.01	0.0	
F4.2.35	AO2 Output Signal Selection	$0.0 \sim 20.00 \mathrm{~mA}(0.0 \sim 10.00 \mathrm{~V})$			

6.2.21 ANALOG INPUT POWER FAILURE DETECTION

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F4.3.36	Analog Input Power Failure Detection		1	0000	\times
F4.3.37	Al1 Power Failure Detection Threshold	0.00~10.00V	0.01	0.25	
F4.3.38	Al1 Power Failure Detection Delay Time	0.01~50.00Sec.	0.01	2.00	
F4.3.39	Al1 Power Failure Detection Response	0: No action (for non-stop alarm) 1: Forcedly set to the minimum 2: Forcedly set to the maximum 3: Forcedly set to the defaults value (F4.3.40) 4: Inverter forced trip stop	1	0	\times
F4.3.40	Al1 Power Failure Default Value	0.00~10.00V	0.01	0.0	
F4.3.41	AI2 Power Failure Detection Threshold	0.00~20.00mA	0.01	4.00	
F4.3.42	AI2 Power Failure Detection Delay Time	0.01~50.00Sec.	0.01	2.00	
F4.3.43	AI2 Power Failure Detection Response	0: No action (for non-stop alarm) 1: Forcedly set to the minimum 2: Forcedly set to the maximum 3: Forcedly set to the defaults value (F4.3.44) 4: Inverter forced trip stop	1	0	\times
F4.3.44	AI2 Power Failure Default Value	0.00~20.00mA	0.01	4.00	
F4.3.45	AI3 Power Failure Detection Upper Threshold	-10.00~10.00V	0.01	0.25	
F4.3.46	AI3 Power Failure Detection Lower Threshold	-10.00~10.00V	0.01	-0.25	
F4.3.47	Al3 Power Failure Detection Delay Time	0.01~50.00Sec.	0.01	2.00	
F4.3.48	AI3 Power Failure Detection Response	0: No action (for non-stop alarm) 1: Forcedly set to the minimum 2: Forcedly set to the maximum 3: Forcedly set to the defaults value (F4.3.49) 4: Inverter forced trip stop	1	0	\times
F4.3.49	Al3 Power Failure Default Value	-10.00~10.00V	0.01	0.0	

6.2.22 SIMULATED ANALOG INPUT (PSEUDO INPUT)

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F4.4.50	Simulated Analog Input 1 SAI1	$\begin{aligned} & \text { 0: Void (0 value) } \\ & \text { 1: SAI_COF1*AI1 } \\ & \text { 2: SAI_COF1*AI2 } \end{aligned}$	1	0	\times
F4.4.51	Simulated Analog Input 2 SAI2	3: SAl_COF1*AI3 4: SAI_COF1*AO1 5: SAI_COF1*AO2 6: SAI_COF1*AI1+SAI_COF2*AI2+SAI_CST 7: SAI_COF1*AI1+SAI_COF2*AI3+SAI_CST 8:SAI_COF1*AO1+SAI_COF2*AO2+SAI_CST 9: SAI_COF1*AI1+SAI_COF2*AO1+SAI_CST 10:SAI_COF1*AI2+SAI_COF2*AO2+SAI_CST 11:SAI_COF1*AI1+SAI_COF2*AO1 12:SAI_COF1*AI3+SAI_COF2*AO2 13:SAI1_COF*AI1/AI2+SAI_CST 14:SAI2_COF*AI2/AI3+SAI_CST 15:SAI1_COF*AI1/AI3+SAI_CST	1	0	\times
F4.4.52	Simulated Input Scaling Factor 1 (SAI_COF1)	0.01~500.00	0.01	1.00	\times
F4.4.53	Simulated Input Scaling Factor 2 (SAI_COF2)	0.01~500.00	0.01	1.00	\times
F4.4.54	Simulated Input Combination Constant (SAI_CST)	-4080~4080	1	0	\times

6.2.23 SKIPPING FREQUENCY

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F5.0.00	Skipping Frequency 1 Midpoint	$0.0 \sim[F 0.1 .21]$	0.01	0.0	\times
F5.0.01	Skipping Frequency 1 Band	$0.0 \sim 10.00 \mathrm{~Hz}$	0.01	0.0	\times
F5.0.02	Skipping Frequency 2 Midpoint	$0.0 \sim[\mathrm{F0.1.21]}$	0.01	0.0	\times
F5.0.03	Skipping Frequency 2 Band	$0.0 \sim 10.00 \mathrm{~Hz}$	0.01	0.0	\times
F5.0.04	Skipping Frequency 3 Midpoint	$0.0 \sim[\mathrm{F0.1.21]}$	0.01	0.0	\times
F5.0.05	Skipping Frequency 3 Band	$0.0 \sim 10.00 \mathrm{~Hz}$	0.01	0.0	\times

6.2.24 BUILT-IN AUXILIARY TIMER

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F5.1.06	Configuration of Timer 1 (H)	LED \square X: Clock selection 0: 1 ms 1: 1 Sec . 2: 1 min . 3: Timer 1cycle reaching pulse (Effective for UT2, UT3) 4: Timer 2 cycle reach pulse (Only effective for UT3) LED \qquad $X_{\text {_ }}$: Start and stop 0: Multifunctional terminal triggering start (Edge triggering/Function No. 52~54) 1: Stop \rightarrow Run status change triggering (Edge triggering) 2: Run \rightarrow Stop status change triggering (Edge triggering) 3: Synchronously started with timer 1 (Effective for UT2, UT3) 4: Timer 1cycle reach pulse (Effective for UT2, UT3) 5: Timer 2 cycle reach pulse (Effective for UT3) LED_ X_{-}: Timer Reset Options 0: Multifunctional terminal (Function No. 55~57) 1: Automatic resetting when the cycle is reached 2 : Automatic resetting when timer is stopped LED X \qquad : Timing cycle 0 : Single-cycle timing (resetting and re-triggering required) 1: Multi-cycle timing (start again after auto clearing)			
F5.1.07	Configuration of Timer 2 (H)				
F5.1.08	Configuration of Timer 3 (H)		1	0000	\times
F5.1.09	Timer 1 Cycle Time	0~65535 (clock cycle)	1	30000	
F5.1.10	Timer 1 Threshold	0~[F5.1.10]	1	10000	
F5.1.11	Timer 2 Cycle Time	0~65535 (clock cycle)	1	30000	
F5.1.12	Timer 2 Threshold	0~[F5.1.11]	1	10000	
F5.1.13	Timer 3 Cycle Time	0~65535 (clock cycle)	1	30000	
F5.1.14	Timer 3 Threshold	0~[F5.1.13]	1	10000	
F5.1.15	Timer Function Selection	\qquad X: Timer 1 Function Selection 0 : No gating function 1: Multifunctional terminal (Function No. 58) 2: Timer 1 comparative value reached (effective for UT2, UT3) 3: Timer 1 cycle reached (effective for UT2, UT3) 4: Timer 2 comparative value reached (effective for UT3) 5: Timer 2 cycle reached	1	0000	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
		(effective for UT3) ${ }_{--} X_{-}$: Timer 2 Output Selection The same as above, 1: Multifunctional terminal (Function No. 59) X $_{-}$: Timer 3 Output Selection The same as above, 1: Multifunctional terminal (Function No. 60)			
F5.1.16	Timer 1 Output	__- X: Output signal1 0 : Comparative value reached (0.5 s pulse) 1: Comparative value reached (level) 2: Comparative value reached and reversed 3: Cycle reached (0.5 s pulse) 4: Cycle reached (level) 5: Cycle reached and reversed 6: Comparative value or cycle reached and reversed _- X_{-}: Output signal 2 The same as above _ $X_{\text {_ }}$: Reserved X \qquad : Reserved	1	0041	
F5.1.17	Timer 2 Output		1	0041	
F5.1.18	Timer 3 Output		1	0041	
F5.1.19	Timer Display Unit (H)		1	0000	

6.2.25 BUILT-IN AUXILIARY COUNTER

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F5.2.20	Counter 1 Configuration (H)	LED _ X _: Counting pulse selection (Function No. 44, 45) 0 : Multifunctional terminal "Void \rightarrow effective" 1: Multifunctional terminal "effective \rightarrow void" 2: Both of the above LED _ X _: Start Manner 0: Start immediately after power-on (no trigger start) 1: Multifunctional terminal trigger (Function No. 46, 47) 2: Stop \rightarrow Run status change triggering (edge triggering) 3: Run \rightarrow Stop Status change triggering (edge triggering) 4: Running status (status gated triggering) 5: Stop status (status gated triggering) LED _ X _ : Counter Reset source 0 : Multifunctional terminal	1	0000	
F5.2.21	Counter 2 Configuration (different from timer: If the counter is not reset, it will overflow and start again from 0) (H)		1	0000	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
		(Function No.48, 49) 1: Set value 1 reaches auto resetting 2: Set value 2 reaches auto resetting			
F5.2.22	Counter 1 Value 1	0~65535	1	1000	
F5.2.23	Counter 1 Value 2	0~65535	1	2000	
F5.2.24	Counter 2 Value 1	0~65535	1	1000	
F5.2.25	Counter 2 Value 2	0~65535	1	2000	
F5.2.26	Counter 1 output (H)	LED___X: Output signal 1 0: Reach set value 1 (0.5Sec.pulse) 1: Reach set value 2 (level) 2: Set value 1 reached and reversed 3: Reach set value 2 (0.5Sec.pulse) 4: Reach set value 2 (level) 5: Set value 1 reached and reversed 6: Set value 1 or set value 2 reached and reversed LED__ The same_: Output signal 2 above LED_X__: Reserved LED X_-_: Reserved	1	0000	
F5.2.27	Counter 2 output (H)	0000			

6.2.26 AUXILIARY FUNCTIONS

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F5.3.28	Frequency Reference Priority Selection	${ }_{-\quad \text { _ }}$ X: $1^{\text {st }}$ priority (highest) 0 : No definition 1: Standard PID output 2: High Speed PID output 3: Swing frequency running command 4: Automatic multi-stage frequency running command 5: Multi-stage operating frequency selected by external terminals 6: Revolution setting channel (F8.0.00) 7: Frequency Setting channel (F0.1.16) _- $X_{\text {_ }} 2^{\text {nd }}$ priority The same as above $X_{--}: 3^{\text {rd }} \text { priority }$ The same as above X \qquad : 4th priority The same as above	1	0000	\times
F5.3.29	Below Minimum Frequency Action	0: Stop 1: Maintain Lower Limit Frequency	1	0	
F5.3.30	Automatic voltage regulation (only effective in VVV control mode)	0: Off 1: Valid 2: Invalid During Deceleration	1	0	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F5.3.31	Energy Saving Mode (only effective for asynchronous motors)	0: Void 1: Effective	1	0	
F5.3.32	DC Injection Braking	0: Void 1: Effective 2: Multifunctional terminal effective (Function No. 65)	1	0	
F5.3.33	DC Injection Braking Intensity	30~120\%	1	40~80	
F5.3.34	Voltage Disturbance Ride-Through	0: Void 1: Effective	1	1	
F5.3.35	Brake Chopper Power Ratio(for some models)	50~100(\%)	1	100	
F5.3.36	Brake Chopper Active Voltage	700~760V	1	720	
F5.3.37	Oscillating Output Current Suppression (only effective in VF control mode)	0.0, 0.01~10.00	0.01	0.0	
F5.3.38	Load Balancing Feature	0 : Void 1: Effective 2: Multifunctional terminal effective (Function No. 38)	1	0	
F5.3.39	Load Balancing Reference	0 : Digital setting (F5.4.40) 1: Al1 input 2: Al2 input 3: Al3 input 4: Fieldbus set value 1 5: High Speed PID output	1	0	
F5.3.40	Load Balancing Reference Value	0.0~ 200.0 (\%)	0.1	100.0	
F5.3.41	Load Balancing Adjustment Gain	0.00~100.00	0.01	50.00	
F5.3.42	Load Balancing Adjustment Limit	0.00~100.00 (\%)	0.01	1.00	

6.2.27 MOTOR TEMPERATURE DETECTION

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F5.4.43	Motor Temperature Sensor	0: None 1: 1 X PT100 2: $2 \times$ PT100 3: $3 \times$ PT100 4: PTC sensor 5: Thermoswitch (normally closed) 6: Thermoswitch (normally open)	1	0	
F5.4.44	Sensor Current Source	$\begin{aligned} & \text { 0: None } \\ & \text { 1: AO1 } \\ & \text { 2: AO2 } \end{aligned}$	1)	2)	
F5.4.45	Temperature input Source	0: None 1: Al1 input (PT100 or PTC) 2: Al3 input (PT100 or PTC) 3: DI1~DI9 (thermoswitch)	1	0	
F5.4.46	Alarm action threshold value	-10.0~500.0 (0~5000 Ω / PTC)	0.1	110.0	
F5.4.47	Protection action threshold value	-10.0~500.0 (0~5000 $/$ /PTC)	0.1	130.0	

NOTE:

1) This parameters is beyond modifying and locking relevant position parameters of $A O 1$ and $A O 2$ (F4.2.22,F4.2.23,F4.2.29,F4.2.35). When PT100 sensor is used, the terminal provides 4.00 mA constant current, and when PTC sensor is used, it provides 1.6 mA constant current.
2) When the sensor serves as thermo-sensitive switch, if the contact point is effective, it is equivalent to temperature value 250, and if the contact point is void, it is equivalent to temperature value 0 . when PTC sensor is used, the value identified by INV is the resistance value of PTC sensor at due time, and the unit of relevant parameters will change correspondingly.

6.2.28 MULTI-STAGE FREQUENCY SETTING

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F6.0.00	Preset Speed 1	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	5.00	
F6.0.01	Preset Speed 2	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	10.00	
F6.0.02	Preset Speed 3	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	15.00	
F6.0.03	Preset Speed 4	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	20.00	
F6.0.04	Preset Speed 5	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	25.00	
F6.0.05	Preset Speed 6	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	30.00	
F6.0.06	Preset Speed 7	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	35.00	
F6.0.07	Preset Speed 8	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	40.00	
F6.0.08	Preset Speed 9	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	45.00	
F6.0.09	Preset Speed 10	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	50.00	
F6.0.10	Preset Speed 11	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	25.00	
F6.0.11	Preset Speed 12	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	5.00	
F6.0.12	Preset Speed 13	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	15.00	
F6.0.13	Preset Speed 14	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	35.00	
F6.0.14	Preset Speed 15	$[F 0.1 .22] \sim[F 0.1 .21]$	0.01	50.00	

6.2.29 SIMPLE PROGRAMMABLE MULTI-STAGE OPERATION

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F6.1.15	Programmable Multi-step Mode(H)	\qquad X: Function selection 0: Function closed 1: Multi-stage frequency / revolution operation effective 2: Multi-stage frequency / revolution operation condition effective (Function No. 23) 3: Multi-stage PID setting operation effective 4: Multi-stage PID setting operation condition effective (Function No. 23) _ _ X _: Running mode 0 : Single cycle 1: Single cycle stop mode 2: Continuous cycle 3: Continuous cycle stop mode 4: Keeping the final value 5: Keeping the final value stop mode X_{-}: Restart Function 0 : Restore running at the first stage 1: Start running at the interruption time (effective for multi-stage frequency/revolution operation) 2: Start running at the stage of interruption X \qquad : Power-off status storage 0: Not stored 1: Stored	1	0000	\times
F6.1.16	Stage 1 setting (H)	_ _ X: Hz of Each Stage 0 : multi-stage frequency setting 1~15/Standard PID multi-stage setting 1~7 1: Frequency command (F0.1.16)/Standard PID setting (F7.0.01) _ _ X _: Direction Setting 0: FWD 1: REV 2: Determined by the running command channel - \mathbf{X} \qquad : Accel/Decel Of Each Stage 0 : Acceleration and deceleration time 1 1: Acceleration and deceleration time 2 2: Acceleration and deceleration time 3 3: Acceleration and deceleration time 4 X \qquad : Each Stage Time Unit 0: Sec. 1: Min.	1	0000	
F6.1.17	Stage 2 setting (H)		1	0000	
F6.1.18	Stage 3 setting (H)		1	0000	
F6.1.19	Stage 4 setting (H)		1	0000	
F6.1.20	Stage 5 setting (H)		1	0000	
F6.1.21	Stage 6 setting (H)		1	0000	
F6.1.22	Stage 7 setting (H)		1	0000	
F6.1.23	Stage 8 setting (H)		1	0000	
F6.1.24	Stage 9 setting (H)		1	0000	
F6.1.25	Stage 10 setting (H)		1	0000	
F6.1.26	Stage 11 setting (H)		1	0000	
F6.1.27	Stage 12 setting (H)		1	0000	
F6.1.28	Stage 13 setting (H)		1	0000	
F6.1.29	Stage 14 setting (H)		1	0000	
F6.1.30	Stage 15 setting (H)		1	0000	
F6.1.31	Running Time Of Stage 1	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.32	Running Time Of Stage 2	0.0~6500.0(Sec./Min.)	0.1	0.0	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F6.1.33	Running Time Of Stage 3	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.34	Running Time Of Stage 4	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.35	Running Time Of Stage 5	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.36	Running Time Of Stage 6	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.37	Running Time Of Stage 7	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.38	Running Time Of Stage 8	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.39	Running Time Of Stage 9	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.40	Running Time Of Stage 10	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.41	Running Time Of Stage 11	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.42	Running Time Of Stage 12	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.43	Running Time Of Stage 13	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.44	Running Time Of Stage 14	0.0~6500.0(Sec./Min.)	0.1	0.0	
F6.1.45	Running Time Of Stage 15	0.0~6500.0(Sec./Min.)	0.1	0.0	

6.2.30 SWING FREQUENCY OPERATION

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F6.2.46	Function selection (H)	\qquad X: Function Setting 0 : Function closed 1: Function effective 2: Terminal selectivity effective (Function No. 24) _ _ X_: Restart Manner 0 : Start with the memory status before stop 1: Restart - X \qquad : Swing control 0 : Fixed swing (relative maximum frequency) 1: Variable swing (relative central frequency) X \qquad : Status storage 0 : Not saved after power-off, and run again after restart 1: Save the status after power-off, and run again from the saved status.	1	0000	\times

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F6．2．47	Preset Frequency of Traverse	$0.0 \sim[F 0.1 .21]$	0.01	10.00	
F6．2．48	Waiting Time For Preset Frequency	$0.0 \sim 6000.0$ Sec．	0.1	0.0	
F6．2．49	Swing Value Of Traverse	$0.0 \sim 50.0(\%)$	0.1	10.0	
F6．2．50	Kick frequency	$0.0 \sim 50.0(\%)$	0.1	10.0	
F6．2．51	Rise Time Of Triangular Wave	$0.1 \sim 1000.0$ Sec．	0.1	10.0	
F6．2．52	Fall Time Of Triangular Wave	$0.1 \sim 1000.0$ Sec．	0.01	10.00	
F6．2．53	Center Frequency Setting Of Traverse	$0.0 \sim[F 0.1 .21]$		0.0	

6．2．31 STANDARD PID（4ms CONTROL CYCLE）

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F7．0．00	Selection of Standard PID Reference	\qquad X：Standard PID controller selection 0：Standard PID closed 1：Unconditionally effective 2：External multifunctional terminal selectivity effective（Function No．22） $X_{\text {＿}}$ ：Reserved \qquad ：Standard PID controller output 0 ：frequency／revolution set value 1：Independent PID（ can be AO terminal output or setting for torque） 千位：主辅叠加模式参照频率基准 0：本通道频率设定上限 1：叠加通道设置值 2：叠加通道设定值／上限频率－叠加通道设定	1	0000	\times
F7．0．01	Standard PID Reference	0：PID Reference Channel 1 1：PID Reference Channel 2 2：Select Channel Via Terminal（Function No．31） 3：Channel 1 ＋Channel 2 4：Channel 1 －Channel 2 5：Channel 1 ＊（1＋Channel 2／100．0） 6：Channel 1 ＊（1－Channel 2／100．0） 7：Channel 1 ＊Channel $2 / 100.0$	1	0	
F7．0．02	PID Reference Channel 1	0：PID Internal Reference（F7．0．08） （power－off save） 1：Keypad Potentiometer 2：Analog input Al1 3：Analog input AI2	1	0	\times
F7．0．03	PID Reference Channel 2		1	0	\times

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit	
		4: Analog input AI3 5: Remote UP/DW 1 (clear after stop) 6: Remote UP/DW 2 (maintained after stop and saved after power-off) 7: Analog input AI3 8: Remote UP/DW 3(clear after stop) 9: U Remote UP/DW 4 (maintained after stop and saved after power-off) 10: MODBUS value 1 11: MODBUS value 2 12: Expansion Communication Setting 1 (reserved) 13: Communication Setting 2 (reserved)				
F7.0.04	Analog Input Minimum Value(Channel 1)	0.0V~[F7.0.05]/Al2: $0.0 \mathrm{~mA} \sim[\mathrm{~F} 7.0 .05]$	0.01	0.0		
F7.0.05	Analog Input Maximum Value (Channel 1)	[F7.0.04]~10.00 /AI2: [F7.0.04]~20.00mA	0.01	10.00		
F7.0.06	Analog Input Minimum Value (Channel 2)	0.0V~[F7.0.07]/Al2: $0.0 \mathrm{~mA} \sim[\mathrm{~F} 7.0 .07]$	0.01	0.0		
F7.0.07	Analog Input Maximum Value (Channel 2)	[F7.0.06]~10.00 /AI2: [F7.0.06]~20.00mA	0.01	10.00		
F7.0.08	PID Internal Reference	-100.0~100.0(\%)	0.1	0.0		
F7.0.09	Standard PID Actual Value Function	0: PID Actual Value 1 1: PID Actual Value 2 2: Select Via Remote Input (Function No. 32) 3: Actual Value 1+ Actual Value 2 4: Actual Value 1-Actual Value 2 5: Actual Value 1* Actual Value $2 / 100.0$ 6: 100.0* Actual Value 1/ Actual Value 2 7: Min. \{ Actual Value 1, Actual Value 2\} 8: Max\{ Actual Value 1, Actual Value 2\} 9: $\sqrt{ }$ (\|Actual Value 1- Actual Value 2) 10: $\sqrt{ }(\mid$ Actual Value 1\|) $+\sqrt{ }(\mid$ Actual Value 2\|)	1	0	
F7.0.10	PID Actual Value 1	0 : Analog input AI1 1: Analog input AI2	1	0		
F7.0.11	PID Actual Value 2	2: Analog input AI3 3: Analog input AI3 4: Fin pulse input	1	0		
F7.0.12	Actual Value 1 Minimum	0.0~[F7.0.13]/AI2: $0.0 \mathrm{~mA} \sim[F 7.0 .13]$	0.01	0.0		
F7.0.13	Actual Value 1 Maximum	[F7.0.12] 10.00V /AI2: [F7.0.12]~20.00mA	0.01	5.00		

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F7.0.14	Actual Value 2 Minimum	$\begin{aligned} & \hline 0.0 \sim[F 7.0 .15] / \mathrm{Al} 2: \\ & 0.0 \mathrm{~mA} \sim[\mathrm{~F} 7.0 .15] \end{aligned}$	0.01	0.0	
F7.0.15	Actual Value 2 Maximum	[F7.0.14] 10.00V /AI2: [F7.0.14] 20.00mA	0.01	5.00	
F7.0.16	Actual Value multiplication factor(e.g. differential voltage calculate flow rate with differential voltage)	0.01~100.00	0.01	1.00	
F7.0.17	Proportional gain	0.0~100.00	0.01	2.00	
F7.0.18	Integration time	0.0, 0.1~1000.0Sec.	0.1	20.0	
F7.0.19	Differential Quotient	0.0, 0.01~10.00	0.01	0.0	
F7.0.20	Differential inertia filtering time	0.01~100.00Sec.	0.01	10.00	
F7.0.21	Configuration Of Standard PID Controller	-_- X: Deviation polarity 0 : Positive deviation 1: Negative deviation (negation) _- X_{\sim} : Output polarity 0 : Single polarity 1: Dual polarity (the symbol can be reversed) - \mathbf{X} \qquad : Action when PID Removed 0 : PID control closed 1: PID output held up and current setting status is maintained.	1	0000	
F7.0.22	Static Deviation (relative 100\% setting)	0.0~20.0\%	0.1	5.0	
F7.0.23	PID output preset (at the time of output frequency as compared to the upper limiting frequency)	0.0~100.0 (\%)	0.01	0.0	
F7.0.24	Preset Running Time	0.0~3600.0Sec.	0.1	0.0	
F7.0.25	Sensor Value When Actual Value is 100%	0.01~100.00	0.01	1.00	
F7.0.26	Sensor Value When Actual Value is 0%	-100.00~100.00	0.01	0.0	

6.2.32 STANDARD PID MULTI-STAGE SETTING

Function Code	Name	Setting range and description	Minimum Unit	Factory default	Change Limit
F7.1.27	PID Preset Setting 1	$-100.0 \sim 100.0(\%)$	0.1	0.0	
F7.1.28	PID Preset Setting 2	$-100.0 \sim 100.0(\%)$	0.1	0.0	
F7.1.29	PID Preset Setting 3	$-100.0 \sim 100.0(\%)$	0.1	0.0	
F7.1.30	PID Preset Setting 4	$-100.0 \sim 100.0(\%)$	0.1	0.0	
F7.1.31	PID Preset Setting 5	$-100.0 \sim 100.0(\%)$	0.1	0.0	
F7.1.32	PID Preset Setting 6	$-100.0 \sim 100.0(\%)$	0.1	0.0	
F7.1.33	PID Preset Setting 7	$-100.0 \sim 100.0(\%)$	0.1	0.0	

6.2.33 STANDARD PID SLEEP FUNCTION (Effective When PID Output Is Used As The Frequency Command)

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F7.2.34	Sleep function	0: Off 2: Select Via Remote Input (Function No. 33)	1	0	
F7.2.35	Sleep frequency	$0.0 \sim[F 0.1 .21]$	0.01	0.0	
F7.2.36	Sleep delay	$0.1 \sim 3600.0$ Sec.	0.1	60.0	
F7.2.37	Wakeup Limit (compared with the set value)	$0.0 \sim 100.0(\%)$	0.1	25.0	
F7.2.38	Wakeup Delay	$0.1 \sim 3600.0$ Sec.	0.1	60.0	

6.2.34 REVOLUTION SETTING AND FEEDBACK

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.0.00	Rotation Speed Reference Scource (only applicable to Vc (F0.1.16) and SVC mode) 1: Keypad Reference (F8.0.03) (maintained after stop and saved after power-off) 2: Keypad Potentiometer 3: Analog inputAI1 4: Analog inputAI2 5: Analog inputAI3 (dual polarity) 6: Pulse Input (Fin) 7: MODBUS Fieldbus set value 1 8: MODBUS Fieldbus set value 2 9: Simulated Analog Input SAI1 10: Simulated Analog Input SAI2 11: Comms Ext Value 1 12: Comms Ext Value 2	1	0	0	
F8.0.01	Rotational Speed Minimum	0~60*[F0.1.21]/pairs of motor poles (rpm)	1	0	
F8.0.02	Rotational Speed Maximum	0~60*[F0.1.21]/pairs of motor poles (rpm)	1	1500	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.0.03	Digital Rotational Reference (Keypad Reference)	$0 \sim 60^{*}[F 0.1 .21] /$ pairs of motor poles (rpm)	1	0	
F8.0.04	Rotational Feedback Source	0: Decoder (PG card needs to be equipped) 1: Single pulse input (Fin port) 2: Analog input AI1 3: Analog input AI2 4: Analog input AI3 (dual polarity)	1	0	\times
F8.0.05	Pulse Per Revolution (PG)	1~8192	1	1024	\times
F8.0.06	Encoder Rotation Direction (Effective for PG card)	0: Phase A Leads 1: Phase B Leads	1	0	\times
F8.0.07	Encoder zero pulse (Z pulse)	0: Void 1: Effective	1	0	\times
F8.0.08	Encoder	0 : ABZ incremental decoder 1: ABZUVW incremental type 2: SINCOS type 3: Rotary transformer	1	0	\times
F8.0.09	Encoder Detection Speed	$---\quad$ X: PG speed detection period1~5ms $-X_{-}:$Reserved $-X_{--}:$Speed closed loop period $\left({ }^{*} 0.25 \mathrm{~ms}\right) 1 \sim 8$	1	0401	
F8.0.10	Loss of Rotational Feedback Signal	\qquad X: Speed Signal Detection 0: Not detect 1: Detect and treat \qquad X_{-}: Speed Signal Detection Action 0: Fault alarm and free stop 1: Continue running after switching to SVC control mode (reserved) 2: DC bind-type brake (reserved)	1	0001	\times
F8.0.11	Loss of Rotational Feedback Signal Delay	0.01~5.00Sec.	0.01	2.00	
F8.0.12	Power Failure Speed(as compared to the maximum set speed)	0~20.0 (\%)	0.1	0.0	
F8.0.13	Rotational Feedback Sensitivity (as compared to the maximum set speed)	0.1~100.0	0.1	5.0	
F8.0.14	Rotational Feedback Filter Time	1~50ms	1	0	
F8.0.15	Rotational Feedback Minimum Value (not PG)	0~30000rpm	1	0	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.0.16	Rotational Feedback Maximum Value (not PG)	$0 \sim 30000$ rpm	1	1500	
F8.0.17	Rotational Feedback Ratio (motor shaft speed: measured shaft speed)	$0.010 \sim 50.000$	0.001	1.000	\times

6.2.35 REVOLUTION CLOSED-LOOP PARAMETER

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.1.18	Controller PID Selection	0: Single PID parameter (the second group of parameters are effective separately) 1: Dual PID parameter (hysteresis switching) 2: Dual PID parameter (continuous switching)	1	2	
F8.1.19	Minimum Rotation Speed for PID Switching (ASR1 group parameter low revolution Effective)	0~[F8.1.20]	1	100	
F8.1.20	Maximum Rotational Speed for PID Switching (ASR2group parameter high revolution effective)	[F8.1.19]~60*[F0.1.21]/pairs of motor poles (rpm)	1	300	
F8.1.21	Proportional gain 1 (ASR-P1)	0.05~1.00	0.01	0.90	
F8.1.22	Integration time 1 (ASR-I1)	0.0, 0.01~50.00 Sec.	0.01	2.50	
F8.1.23	Differential Quotient 1 (ASR-D1)	0.0, 0.01~10.00	0.01	0.0	
F8.1.24	Differential output filtering Time1 (ASR-DT1)	0.10~5.00 Sec.	0.01	0.80	
F8.1.25	Proportional gain 2 (ASR-P2)	0.05~1.00	0.01	5.00	
F8.1.26	Integration time 2 (ASR-I2)	0.0, 0.01~50.00 Sec.	0.01	2.50	
F8.1.27	Differential Quotient 2 (ASR-D2)	0.0, 0.01~10.00	0.01	0.0	
F8.1.28	Differential output filtering Time 2 (ASR-DT2)	0.10~10.00 Sec.	0.01	1.00	
F8.1.29	Maximum Torque Output	0.0~300.0\% (corresponding to parameter F1.4.47 in V/F control mode)	0.1	200.0	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.1.30	Minimum Torque Output	$-300.0 \sim 0.0 \%$	0.1	-200.0	
F8.1.31	Time coefficient of Torque output filtering	$0.0,0.01 \sim 1000.00 \mathrm{~ms}$	0.1	0.0	

6.2.36 PROTECTION PARAMETER

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.2.32	Excessive Rotation (DEV)	0: No action 1: Alarm free stop 2: Alarm deceleration stop 3: Alarm continuing running	1	0	\times
	Over speed (OS) Protection	0.0~50.0\% (as compared to upper limiting frequency)	0.1	20.0	\times
F8.2.34	Over speed Protection Limit (DEV)	Over speed protection Period (DEV)	$0.0 \sim 10.00$ Sec.	0.01	10.00
F8.2.36	Over Speed Detection Value(OS)	$0.0 \sim 150.0 \%$ (as compared to upper limiting frequency)	0.1	120.0	
F8.2.37	Over Speed Detection Time (OS)	$0.0 \sim 2.00$ Sec.	0.01	0.10	
F8.2.38	Speed estimate gain	$0.10 \sim 10.00$	0.01	1.00	

6.2.37 TORQUE CONTROL

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.3.39	Torque Control Activation	0: Void 1: Effective 2: Multifunctional terminal selection effective (Function No. 34)	1	0	\times
F8.3.40	Torque control Refernece (selecting the command direction)	0: Digital setting (F8.3.41) 1: Panel shuttle potentiometer setting 2: Analog inputAl1 3: Analog inputAl2 4: Analog inputAl3 5: Analog inputAI3 (dual polarity) 6: Frequency signal input (Fin) 7: Standard PID output 8: High Speed PID output 9: MODBUS Fieldbus set value 1 10: MODBUS Fieldbus set value 2 11: Virtual analog input SAI1 12: Virtual mode input SAI2 13: Set value 1 of expansion communication module 14: Set value 2 of expansion communication module	1	0	
F8.3.41	Torque digital setting	-300.0~300.0 (\%)	0.1	0.0	
F8.3.42	Torque Digital rise time	0.0~50.000Sec.	0.001	0.01	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.3.43	Torque Digital Fall time	0.0~50.000Sec.	0.001	0.01	
F8.3.44	Torque Control Speed Limit Source	\qquad X: Source of FWD Speed 0 : Setting of FWD revolution limiting value (F8.3.45) 1: Determination of frequency Setting channel 1 (F0.2.25) \square \qquad : Source of REV Speed 0 : Setting of REV revolution limiting value (F8.3.46) 1: Determination of frequency Setting channel 2 (F0.2.26)	1	0000	
F8.3.45	Speed limit in FWD Direction	0~60*[F0.1.21]/pairs of motor poles (rpm)	1	1500	
F8.3.46	Speed limit in REV Direction	0~60*[F0.1.21]/pairs of motor poles (rpm)	1	1500	
F8.3.47	Torque Limit Source	X: Minimum torque Limit source (negative torque limit) 0 : Minimum torque set value 1 (F 8.3 .48) 1: Minimum torque set value 2 (F8.3.49) 2: Multifunctional selection terminal setting 1 or 2 3: Al1 set value 4: Al2 set value 5: MODBUS Fieldbus set value 1 6: MODBUS Fieldbus set value 2 7: Expand communication module value 1 8: Expand communication module value 2 _ $X_{\text {_ : Reserved }}$ X \qquad : Maximum torque Limit source 0 : Maximum torque set value 1 (F8.3.50) 1: Maximum torque set value 2 (F8.3.51) 2: Multifunctional selection terminal setting 1 or 2 (Function No. 36) 3: Al1 set value 4: Al2 set value 5: MODBUS Fieldbus set value 1 6: MODBUS Fieldbus set value 2 7: Set value 1 of expansion communication module 8: Set value 2 of expansion communication module	1	0000	
F8.3.48	Minimum torque limit 1	-300.0~0.0\%	0.1	-230.0	
F8.3.49	Minimum torque limit 2	-300.0~0.0\%	0.1	-230.0	
F8.3.50	Maximum torque limit 1	0.0~300.0\%	0.1	230.0	
F8.3.51	Maximum torque limit 2	0.0~300.0\%	0.1	230.0	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F8.3.52	Torque zero offset	$-25.0 \sim 25.0 \%$	0.1	0.0	

6.2.38 HIGH SPEED PID (RUNNING CYCLE: 1ms)

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F9.0.00	High Speed PID Function	_ _ X X: Controller Input 0: Closed 1: Synchronously effective with inverter running command 2: Activated when the Multifunctional terminal is effective (Function No. 25) 3: Immediately effective after the inverter is powered on. __ \mathbf{X}_{-}: Reserved _ X \qquad : Controller output 0: Feed FWD compensation - added with the frequency integrator output, and the complementation ratio is set by parameterF9.0.01. 1: Independent PID- the output can be set by the AO terminal output/torque. 2: Set PID - output used as frequency/revolution command \qquad : Feedforward compensation frequency benchmark 0 : Elative to up limiting frequency 1: Relative to frequency integrator output	1	0100	\times
F9.0.01	Proportional Compensation (as compared to upper limiting frequency)	0.0~100.0(\%)	0.1	50.0	
F9.0.02	High Speed PID Configuration	\qquad X: Deviation polarity 0 : Positive deviation 1: Negative deviation (negation) \qquad $X_{\text {_ }}$: Output polarity 0 : Single polarity 1: dual polarity X_{-}_: Loss Of Signal Response 0: PID control closed 1: PID output held on (maintaining current running setting)	1	0010	
F9.0.03	Proportional gain 1	0.0~100.00	0.01	2.00	
F9.0.04	Integration time 1	0.0, 0.01~100.00Sec.	0.01	2.00	
F9.0.05	Differential Quotient 1	0.0, 0.01~10.00	0.01	0.0	
F9.0.06	Differential Internal filtering time 1	0.01~25.00Sec.	0.01	5.00	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F9.0.07	High speed PID Output Filter Time	0.0, $0.01 \sim 20.00$ Sec.	0.01	1.00	
F9.0.08	High Speed PID Reference	0: Internal digital setting (F9.0.11) (auto save after power off) 1: Panel shuttle potentiometer preset value 2: Analog inputAl1 3: Analog inputAl2 4: Analog inputAI3 5: UP/DW terminal (clear after stop) 6: UP/DW terminal (maintaining after stop and save after power-off) 7: MODBUS Fieldbus set value 1 8: MODBUS Fieldbus set value 2 9: Set value 1 of expansion communication module 10: Set value 2 of expansion communication module	1	0	
F9.0.09	Analog input Minimum Value	0.0V~[F9.0.10]/AI2: $0.0 \mathrm{~mA} \sim[\mathrm{F9} 9.0 .10]$	0.01	0.0	
F9.0.10	Analog input Maximum Value	[F9.0.09]~10.00 /AI2: [F9.0.09]~20.00mA	0.01	10.00	
F9.0.11	PID Internal Reference	0.0~100.0 (\%)	0.1	0.0	
F9.0.12	High Speed PID Actual Value Selection	0: Analog input AI1 1: Analog input AI2 2: Analog input AI3 3: Output current 4: Output torque 5: Output power	1	0	
F9.0.13	Actual Value Analog Input Minimum	0.0V~[F9.0.14]/Al2: $0.0 \mathrm{~mA} \sim[\mathrm{~F} 9.0 .14]$	0.01	0.0	
F9.0.14	Actual Value Analog Input Maximum	[F9.0.13]~10.00 /AI2: [F9.0.13]~20.00mA	0.01	10.00	
F9.0.15	Actual Value multiplication factor	0.01~100.00	0.01	1.00	
F9.0.16	Sensor Value When Actual Value is 100\%	0.01~100.00	0.01	1.00	
F9.0.17 \sim F9.0.20	Reserved				

6.2.39 HIGH SPEED PID CONTROLLER PARAMETER SELECTION

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
F9.1.21	High Speed PID Parameter Selection	--_ X: PID parameters 0: Single PID parameter 1: Dual PID parameters 2: Three PID parameters 3: Four PID parameters	1	0020	

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
		```_- X _: PID parameter switching mode 0 : As per set value 1: As per feedback value 2: As per output frequency 3: Selected by multifunctional terminal (Function No. 63 and 64)```			
F9.1.22	Parameter Switching   Factor	$0.01 \sim 50.00$	0.01	1.00	
F9.1.23	Lower limit for group 1/2 parameter switching	0.0~[F9.1.24]	0.1	0.0	
F9.1.24	Upper limit for group 1/2 parameter switching	[F9.1.23] 100.0 (\%)	0.1	0.0	
F9.1.25	Lower limit for group 2/3 parameter switching	[F9.1.24]~[F9.1.26]	0.1	100.0	
F9.1.26	Upper limit for group 2/3 parameter switching	[F9.1.25]~100.0 (\%)	0.1	100.0	
F9.1.27	Lower limit for group 3/4 parameter switching	[F9.1.26]~[F9.1.28]	0.1	100.0	
F9.1.28	Upper limit for group 3/4 parameter switching	[F9.1.27] 100.0 (\%)	0.1	100.0	
F9.1.29	Proportional gain 2	0.0~100.00	0.01	2.00	
F9.1.30	Integration time 2	0.0~100.00Sec	0.01	2.00	
F9.1.31	Differential Quotient 2	0.0~10.0	0.01	0.0	
F9.1.32	Differential output filtering Time 2	0.01~25.00Sec.	0.01	5.00	
F9.1.33	Output Filtering Time 2	0.0~20.00Sec	0.01	1.00	
F9.1.34	Proportional gain 3	0.0~100.00	0.01	2.00	
F9.1.35	Integration time 3	0.0~100.00Sec	0.01	2.00	
F9.1.36	Differential Quotient 3	0.0, 0.01~10.00	0.01	0.0	
F9.1.37	Differential output filtering Time 3	0.01~25.00Sec.	0.01	5.00	
F9.1.38	Output Filtering Time 3	0.0~20.00Sec.	0.01	1.00	
F9.1.39	Proportional gain 4	0.0~100.00	0.01	2.00	
F9.1.40	Integration time 4	0.0~100.00Sec.	0.01	2.00	
F9.1.41	Differential coefficient4	0.0~10.00	0.01	0.0	
F9.1.42	Differential output filtering Time 4	0.01~25.00Sec.	0.01	5.00	
F9.1.43	Output Filtering Time 4	0.0~20.00Sec.	0.01	1.00	

$100 \%$ PID setting corresponds to $100 \%$ rated output current of the motor, motor rated torque and rated power. It needs to appropriately set up the feedback factor, output torque and power to be values with symbols according to actual application.

## 6．2．40 MODBUS FIELDBUS（STANDARD EXPANSION CARD CONFIGURATION）

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
FA．0．00	Communication card connection and bus status	0 ：The communication card not connected   1：Standard MODBUS communication card connected   2：Listen only status   3：Communication interrupted	1	－	R
FA．0．01	Parameters Configuration	$-\quad$ X：Baud rate selection $0: 1200 \mathrm{kbit} / \mathrm{s}$ $1: 2400 \mathrm{kbit} / \mathrm{s}$ $2: 4800 \mathrm{kbit} / \mathrm{s}$ $3: 9600 \mathrm{kbit} / \mathrm{s}$ $4: 19200 \mathrm{kbit} / \mathrm{s}$ $5: 38400 \mathrm{kbit} / \mathrm{s}$ 6： $76800 \mathrm{kbit} / \mathrm{s}$ $-\quad$ X＿：Data format $0: 1-8-1-\mathrm{N}$, RTU $1: 1-8-1-\mathrm{E}$, RTU $2: 1-8-1-\mathrm{O}$, RTU $3: 1-8-2-\mathrm{N}$, RTU	1	0003	$\times$
FA．0．02	Equipment Address	$\begin{aligned} & \hline 0 \sim 247 \\ & \text { (0 stands for broadcasting address) } \end{aligned}$	1	1	$\times$
FA．0．03	The device response delay	0～1000ms	1	5	
FA．0．04	Judgment Time Of   Communication Failure	0．01～10．00Sec．	0.01	1.00	$\times$
FA．0．05	Loss of signal Response	0：Deceleration stop   1：Run as per last received command	1	0	
FA．0．06	Selection of communication configuration files	0 ：CMG standard configuration file 1：CMG standard configuration file 2	1	0	

## 6．2．41 MAPPING ACCESS PARAMETER

Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
FA．1．08	Mapping application   parameter $1(H)$	F0．00～FF．55	1	F0．29	$\times$
FA．1．09	Mapping application   parameter 2（H）	F0．00～FF．55	1	F0．29	$\times$
FA．1．10	Mapping application   parameter 3（H）	F0．00～FF．55	1	F0．29	$\times$
FA．1．11	Mapping application   parameter 4（H）	F0．00～FF．55	1	F0．32	$\times$
FA．1．12	Mapping application   parameter 5（H）	F0．00～FF．55	1	F0．32	$\times$
FA．1．13	Mapping application   parameter 6（H）	F0．00～FF．55	F0．32	$\times$	


FA.1.14	Mapping status parameter 1 (H)	d0.00 ~ d1.49	1	d0.00		
FA.1.15	Mapping status parameter 2 (H)	d0.00 ~ d1.49	1	d0.01		
FA.1.16	Mapping status parameter 3 (H)	d0.00 ~ d1.49	1	d0.02		
FA.1.17	Mapping status parameter $4(\mathrm{H})$	d0.00 ~ d1.49	1	d0.03		
FA.1.18	Mapping status parameter 5 (H)	d0.00 ~ d1.49	1	d0.04		
FA.1.19	Mapping status parameter 6 (H)	d0.00 ~ d1.49	1	d0.05		
FA.1.20	Mapping status parameter 7 (H)	d0.00 ~ d1.49	1	d0.06		
FA.1.21	Mapping status parameter 8 (H)	d0.00 ~ d1.49	1	d0.07		
FA.1.22	Mapping status parameter 9 (H)	d0.00 ~ d1.49	1	d0.08		
FA.1.23	Mapping status parameter $10(\mathrm{H})$	d0.00 ~ d1.49	1	d0.09		

### 6.2.42 COMMUNICATION LINKAGE SYNCHRONOUS CONTROL

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
FA.2.25	Synchronous Coupling Control Options	_-_   X: Selection of Coupling function   0 : Void   1: The device is the salve device   2: The device is the master device $\qquad$ X _: Coupling target value   (Master device parameter)   0 : Proportional linkage of frequency /revolution set value   1: Proportional linkage of frequency /revolution integrator output value X $\qquad$ : Coupling command (slave device parameter)   0 : Independent control of slave device (start and stop not linked)   1: Start and stop command linked   2: Start-stop/jog linked   3: Start-stop/jog/excitation linked   4: Start-stop/jog/excitation /DC bind-type brake/DC braking linked   X $\qquad$ : Reserved	1	0310	$\times$
FA.2.26	Set the correction coefficient of the unit via communication	0.010~10.000	0.001	1.000	
FA.2.27	Coupling Fine Proportional Adjustment	0: No fine adjustment   1: Analog inputAl1   2: Analog inputAl2   3: Analog inputAl3	1	0	


Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
FA．2．28	Slave offset   frequency／   Rotation speed	0：No offset   1：Determined by frequency setting   source 1   2： Determined by frequency setting   source 2	1	0	
FA．2．29	Coupling balancing   function	0：Void   1：Current balancing   2：Torque balancing   3：Power balancing   4：Position synchronous balancing	0.001	1.000	
FA．2．30	Coupling balancing   gain	$0.001 \sim 10.000$	-	1.00	
FA．2．31	Amplitude limit of   synchronous   position balancing	$0.10 \sim 10.00 \mathrm{~Hz}$	-	-	
FA．2．32	Reserved	-	-	0	

6．2．43 PARAMETERS OF EXPANSION COMMUNICATION MODULE

Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
FA．3．33	Communication   Extension Module   Type	0：Unexpanded bus communication   adaptor   1：Expansion RS485 bus（MODBUS   standard）   2：PROFIBUS－DP   3：INTERBUS   4：LONWORKS   5：CANOPEN   6：DEVICENET   7：MODBUSPLUS   CONTROLNET	8：		
FA．3．34～		Refer to user manual of＂Expansion   Communication Module＂．	-	R	
FA．3．55					

## 6．2．44 EXPANSION MULTIFUNCTIONAL INPUT TERMINAL（EDI1～EDI8）I EFFECTIVE AFTER CONNECTING EXPANDING ACCESSORIES

Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
Fb．0．00	Multifunctional Input DI1	$0 \sim 96$	1	0	$\times$
Fb．0．01	Multifunctional Input DI2	$0 \sim 96$	1	0	$\times$
Fb．0．02	Multifunctional Input DI3	$0 \sim 96$	1	0	$\times$
Fb．0．03	Multifunctional Input DI4	$0 \sim 96$	1	0	$\times$
Fb．0．04	Multifunctional Input DI5	$0 \sim 96$	1	0	$\times$
Fb．0．05	Multifunctional Input DI6	$0 \sim 96$	1	0	$\times$
Fb．0．06	Multifunctional Input DI7	$0 \sim 96$	1	0	$\times$
Fb．0．07	Multifunctional Input DI8	$0 \sim 96$	1	0	$\times$
Fb．0．08	Filter Time Multifunctional	$1 \sim 50 \mathrm{~ms}$	1	5	


Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change   Limit
	Terminals				
Fb．0．09	Multifunctional Input Configuration（H）	＿＿X：EDI1～EDI4 terminal 0～F：4－bit binary system，bit＝0 power－on effective， 1 Disconnection Effective －＿$X$   X＿：EDI5～EDI8 terminal The same as above X $\qquad$ ：Reserved X $\qquad$ ：Reserved	1	0000	$\times$

## 6．2．45 EXPANSION MULTIFUNCTIONAL INPUT TERMINAL（EDO1／ERO1～ EDO4／ERO4）

Function   Code	Name	Setting Range and   Description	Minimum   Unit	Factory   Default	Change   Limit
Fb．1．10	Multifunctional Output DO1	$0 \sim 62$	1	0	
Fb．1．11	Multifunctional Output DO2	$0 \sim 62$	1	0	
Fb．1．12	Multifunctional Output DO3	$0 \sim 62$	1	0	
Fb．1．13	Multifunctional Output DO4	$0 \sim 62$	1	0	
Fb．1．14	Relay Output RO1	$0 \sim 62$	1	0	
Fb．1．15	Relay Output RO2	$0 \sim 62$	1	0	
Fb．1．16	Relay Output RO3	$0 \sim 62$	1	0	
Fb．1．17	Relay Output RO4	$0 \sim 62$	1	0	

## 6．2．46 ZERO－SPEED TORQUE AND POSITION CONTROL

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
Fb．2．18	Automatic Step Switching Frequency	0～5．00Hz	0.01	1.00	
Fb．2．19	Automatic Step Switching cycle Holding	0．10～2．00Sec	0.01	0.30	
Fb．2．20	Torque at 0 Hz （DC bind－type brake preferred）	0：Void   1：Bind－type brake torque effective   2：Position locking（PG feedback VC mode）   3．Locked to given stop angle （PG feedback VC mode）	1	0	$\times$
Fb．2．21	Position locking gain （positioning gain ）	0．10～100．00	0.01	1.00	
Fb．2．22	Linear Distance per Encoder Turn	0．001～50．000mm	0.01	0.500	
Fb．2．23	Servo control function	$\qquad$ X：Function selection   0：Void   1：Effective   2：External terminal selection （Function No．69）	1	0000	$\times$


Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change   Limit
		$-\quad X_{-}$：Action mode 0 ：Common mode 1：Spindle orientation			
Fb．2．24	Position setting source in common mode	0：Reserved   1：Fin input   2：Digital setting   3：Analog inputAl1   4：MODBUS bus set value 1   5：MODBUS bus set value 2   6．Expansion bus set value 1   7．Expansion bus set value 2	1	1	
Fb．2．25	Position digital setting（lower）	0～65535	1	0	
Fb．2．26	Position digital setting（upper）	0～5000	1	0	
Fb．2．27	Electronic gear（numerator）	0～65535	1	1000	
Fb．2．28	Electronic gear（denominator）	0～65535	1	1000	
Fb．2．29	Position command filtering time coefficient	1～1000．0ms	1	10	
Fb．2．30	Position gain 2	0．01～100．00	0.01	1.00	
Fb．2．31	Position gain selection mode	0 ：Gain 1 Effective   1：Gain 2 Effective   2：External terminal selection（Function No．75）   3：Position deviation selection	1	0	
Fb．2．32	Position gain selected threshold value（Position deviation）	0～30000	1	10	
Fb．2．33	Speed feed－FWD gain	0．0～200．0（\％）	0.1	100.0	
Fb．2．34	Revolution limiting mode in common servo mode	0 ：Limited by upper limiting frequency   1：Frequency setting channel	1	0	
Fb．2．35	Reserved				
Fb．2．36	Spindle orientation mode	$\qquad$ X：Selection of reference signal for positioning zero point   0 ：Z pulse positioning   1：Photoelectric switch positioning （Function No．70） $\qquad$ $X_{\text {＿}}$ ：Command   0 ：External terminal selection   1：Pulse command setting $\qquad$ ：Positioning direction   0 ：Positioning according to instruction direction   1：Positioning according to minimum angle	1	0000	$\times$
Fb．2．37	Spindle orientation frequency／speed	0．01～100．00Hz	0.01	5.00	


Function   Code	Name	Setting Range and   Description	Minimum   Unit	Factory   Default	Change   Limit
Fb．2．38	Spindle orientation angle 1	$0 \sim 359.9$	0.1	45.0	
Fb．2．39	Spindle orientation angle 2	$0 \sim 359.9$	0.1	90.0	
Fb．2．40	Spindle orientation angle 3	$0 \sim 359.9$	0.1	135.0	
Fb．2．41	Spindle orientation angle 4	$0 \sim 359.9$	0.1	180.0	
Fb．2．42	Spindle orientation angle 5	$0 \sim 359.9$	0.1	225.0	
Fb．2．43	Spindle orientation angle 6	$0 \sim 359.9$	0.1	270.0	
Fb．2．44	Spindle orientation angle 7	$0 \sim 359.9$	0.1	315.0	
Fb．2．45	Spindle stop angle	$0 \sim 359.9$	0.1	0.0	
Fb．2．46	Spindle transmission ratio   （detection spindle speed：   Spindle Revolution ）	$0.010 \sim 50.000$	0.001	1.000	$\times$
Fb．2．47	Spindle orientation／Position   reach error	$0 \sim 500$	1	50	

6．2．47 SIMULATED INPUT AND OUTPUT

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
FF．0．00	FF configuration parameter locking function（H）		1	0000	
FF．0．01	Definition of virtual output node（SDO1）	0～71	1	0	
FF．0．02	Definition of virtual output node（SDO2）	0～71	1	0	
FF．0．03	Definition of virtual output node（SDO3）	0～71	1	0	
FF．0．04	Definition of virtual output node（SDO4）	0～71	1	0	
FF．0．05	Definition of virtual output node（SDO5）	0～71	1	0	
FF．0．06	Definition of virtual output node（SDO6）	0～71	1	0	
FF．0．07	Definition of virtual output node（SDO7）	0～71	1	0	
FF．0．08	Definition of virtual output node（SDO8）	0～71	1	0	
FF． 0.09	Definition of virtual input function（SDI1）	0～96	1	0	$\times$
FF．0．10	Definition of virtual input function（SDI2）	0～96	1	0	$\times$
FF．0．11	Definition of virtual	0～96	1	0	$\times$


Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
	input function (SDI3)				
FF.0.12	Definition of virtual input function (SDI4)	0~96	1	0	$\times$
FF.0.13	Definition of virtual input function (SDI5)	0~96	1	0	$\times$
FF.0.14	Definition of virtual input function (SDI6)	0~96	1	0	$\times$
FF.0.15	Definition of virtual input function (SDI7)	0~96	1	0	$\times$
FF.0.16	Definition of virtual input function (SDI8)	0~96	1	0	$\times$
FF.0.17	Virtual output- input connection polarity	_- _ X: SDO1-SDI1   0 : Homopolar connection   1: Antipolar connection $\qquad$ X _: SDO2-SDI2   0 : Homopolar connection   1: Antipolar connection X $\qquad$ : SDO3-SDI3   0: Homopolar connection   1: Antipolar connection X $\qquad$ : SDO4-SDI4   0 : Homopolar connection   1: Antipolar connection	1	0000	$\times$
FF.0.18	Virtual output- input connection polarity	_-_ X: SDO5-SDI5   0 : Homopolar connection   1: Antipolar connection $\qquad$ X _: SDO6-SDI6   0 : Homopolar connection   1: Antipolar connection X $\qquad$ : SDO7-SDI7   0 : Homopolar connection   1: Antipolar connection X $\qquad$ : SDO8-SDI8   0 : Homopolar connection   1: Antipolar connection	1	0000	$\times$

### 6.2.48 PROTECTION FUNCTION CONFIGURATION PARAMETER

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
FF.1.19	Protective action configuration $1(\mathrm{H})$	X: Operation undervolts protection   0: No action   1: Act $\qquad$ $X_{-}$: Output grounding protection   0 : No action   1: Act $\qquad$ : input voltage phase shortage protection (Void for single camera)   0 : No action   1: Trip and stop   2: Nonstop alarm   X $\qquad$ : Output current phase shortage or unbalancing protection   0: No action   1: Trip and stop   2: Nonstop alarm	1	1111	
FF.1.20	Protective action configuration 2 (H)	_ _ _ X: Temperature sensor fault   0: No action   1: Trip and stop   2: Nonstop alarm   _- X _: Inverter overheat alarm   0: Closed   1: Act   $X_{-}$: Input voltage unbalancing protection   0: No action   1: Trip and stop   2: Nonstop alarm $\qquad$ : Motor over temperature protection   0 : No action   1: Trip and stop   2: Nonstop alarm	1	1111	
FF.1.21	Protective action configuration 3 (H)		1	0110	
FF.1.22	Protective action configuration $4(\mathrm{H})$	$\qquad$ X : Drive protection action   0: Closed   1: Act   X _: Reserved $\qquad$ $\qquad$ : A/B pulse phase sequence errors protection   0 : Off   1: Effective	1	0101	
FF.1.23	Configuration of protection operation 5 (H)	$-{ }^{-\quad \text { X:Warning block }}$$0:$ OffX_: Output power phase sequence   protection   $0:$ Off	1	0000	


Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
		1: R, S, T phase sequence fault tripping   2: R, S, T phase sequence fault warning   _X__: Drive interference self-recovery   0: Void $\quad$ 1: Effective			
FF.1.24	Reserved	-			

### 6.2.49 CORRECTION PARAMETER

Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
FF.2.25	Al1 zero offset adjustment	$-0.500 \sim 0.500 \mathrm{~V}$	0.001	0.0	
FF.2.26	Al1 gain Adjustment	$0.950 \sim 1.050$	0.001	1.000	
FF.2.27	4 mA offset adjustement for   Al2	$-0.500 \sim 0.500 \mathrm{~mA}$	0.001	0.0	
FF.2.28	Al2 gain Adjustment	$0.950 \sim 1.050$	0.001	1.000	
FF.2.29	Al3 zero offset adjustment	$-0.500 \sim 0.500 \mathrm{~V}$	0.001	0.0	
FF.2.30	Al3 gain Adjustment	$0.950 \sim 1.050$	0.001	1.000	
FF.2.31	AO1 zero offset correction	$-0.500 \sim 0.500 \mathrm{~V}$	0.001	0.0	
FF.2.32	AO1 gain Adjustment	$0.950 \sim 1.050$	0.001	1.000	
FF.2.33	AO2 zero offset correction	$-0.500 \sim 0.500 \mathrm{~V}$	0.001	0.0	
FF.2.34	AO2 gain Adjustment	$0.950 \sim 1.050$	0.001	1.000	
FF.2.35	Undervoltage Proctection   level	$320 \sim 450 \mathrm{~V}$	0.001	1.000	
FF.2.36	DC Bus Volts Dectection   Level Gain	$0.950 \sim 1.050$			$\times$

6.2.50 SPECIAL FUNCTIONAL PARAMETERS

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change   Limit
FF.3.37	Torque Limit Configuration (H)	_-_ X: Constant torque area torque limitation   0 : Only limited by torque limiting parameter (including Revolution PID output limit)   1: Also limited by acceleration and deceleration current level and maximum permitted current.   X_: Reserved $\qquad$ $\qquad$ : Constant power area torque limitation   0 : Treated the same as the constant torque area   1: Simultaneously adjusted as per constant power algorithm	1	0101	
FF.3.38	Current closed-loop proportional gain	$0.10 \sim 10.00$	0.01	1.00	


Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
FF．3．39	Current closed－loop   integration time constant	$0.10 \sim 10.00(\mathrm{Sec})$.	0.01	1.00	
FF．3．40	Total leakage inductance   compensation constant	$0.10 \sim 10.00$	0.01	1.00	

## 6．2．51 OTHER CONFIGURATION PARAMETERS

Function Code	Name	Setting Range and Description	$\begin{aligned} & \hline \text { Minimum } \\ & \text { Unit } \end{aligned}$	Factory Default	Change Limit
FF．4．41	Cooling fan control		1	0101	
FF．4．42	Keypad Control   Running   Options	X：REVIJOG key function selection   0：REV（REV running key）   1：JOG（FWD jog key） X＿：Reserved $\qquad$ ：Reserved $\qquad$ ：Keypad control selection （except STOP key）   0：Standard panel interface control（can be connected to monitoring panel via RS485）   1：RS485 port external panel control（standard panel，only for monitoring）   2：Multifunctional terminal switching（Function No．40）	1	0000	$\times$
FF．4．43	Special function configuration		1	0001	
FF．4．44	Asynchronous motor parameter Auto Tune		1	0011	


Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
		1~5: Effective (gradually better)			
FF.4.45	Random   reference value	$0 \sim 65535$	1		R
FF.5.46	Factory   Universal Code	-	-	-	-

### 6.2.52 HISTORICAL FAULT RECORDING

Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
dE.0.00	Last Fault	-	-	-	R/I
dE.0.01	Fault 1	-	-	-	R/I
dE.0.02	Fault 2	-	-	-	R/I
dE.0.03	Fault 3	-	-	-	R/I
dE.0.04	Fault 4	-	-	-	R/I
dE.0.05	Fault 5	-	-	-	R/I
dE.0.06	Fault 6	-	-	-	R/I
dE.0.07	Fault 7	-	-	-	R/I

6.2.53 OPERATION STATUS AT THE LAST FAULT

Function Code	Name	Setting Range and Description	Minimum Unit	Factory   Default	Change   Limit
dE.0.08	Operating frequency (rotor synchronous frequency)	-300.00~300.00Hz	0.01	0	R/I
dE.0.09	Output current	0.0~3000.0A	0.1	0	R/I
dE.0.10	Output voltage	0~1000V	1	0	R/I
dE.0.11	Motor Speed	0~30000rpm	1	0	R/I
dE.0.12	DC Bus Voltage	0~1000V	1	0	R/I
dE.0.13	Output torque	-300.0~ 300.0\%	0.1	0	R/I
dE.0.14	Target frequency	$0.0 \sim 300.00 \mathrm{~Hz}$	0.01	0	R/I
dE.0.15	Highest Drive temperature	0.0~150.0	0.1	0	R/I
dE.0.16	Command status	--- $\mathbf{X}:$ 0: Stop command 1: Running command $-\mathbf{X}_{-}$: Reserved $\mathbf{X}_{--}$: Reserved $\mathbf{X}_{-\ldots}$ : Reserved	1	0000	R/I
dE.0.17	Run Conditions at Time of Fault	--_   X : Operation mode   0 : VF mode   1: Open-loop vector speed   2: Closed-loop vector speed   3: Open-loop torque control   4: Closed-loop torque control   5: V/F separated control	1	0000	R/I


Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change   Limit
		_- X _: Operation status   0: Stop   1: Start acceleration   2: Stop deceleration   3: Decreasing frequency and deceleration   4: Steady operation - $\qquad$ : Electric/braking status   0: Electric operation   1: Power generation operation   X $\qquad$ : Limit suppression   0: No action   1: Overcurrent suppression action   2: Overvoltage suppressor action   3: Undervoltage suppression action			
dE.0.18	Total Run Hours at Last Fault	0~65535	1H	65535	R/I
dE.0.19	Time Since last Trip	0~65535	1H	65535	R/I
dE.0.20	Synchronous output frequency	-300.00~300.00Hz	0.01	0	R/I

### 6.2.54 BASIC STATUS PARAMETER

Function Code	Name	Setting Range and Description	Minimum Unit	Factory   Default	Change   Limit
d0.0.00	Output frequency and direction (rotor synchronous frequency)	$-300.0 \mathrm{~Hz} \sim 300.00 \mathrm{~Hz}$	0.01 Hz	-	R
d0.0.01	Motor Rotational Speed and direction	-30000~30000rpm	1 rpm	-	R
d0.0.02	Output current	0.0~ 6000.0A	0.1A	-	R
d0.0.03	Output torque	-300.0~300.0\%	0.1\%	-	R
d0.0.04	Output voltage	0~500V	1V		R
d0.0.05	Output power	-1000.0~1000.0KW	0.1KW	-	R
d0.0.06	Highest Temperature of Machine Body	$0 \sim 150.0^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	-	R
d0.0.07	DC Lateral Voltage	0~1000V	1V	-	R
d0.0.08	Drive running status	$\qquad$ X: Operation mode   0: VF mode   1: Open-loop vector speed   2: Closed-loop vector speed   3: Open-loop torque control   4: Closed-loop torque control   5: V/F separated control   _- $X_{-}$: Operation status   0: Stop   1: Start acceleration   2: Stop deceleration   3: Decreasing frequency and	1		R


Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
		deceleration   4: Steady operation   ${ }_{-} X_{-}$: Electric/braking status   0 : Electric operation   1: Power generation operation   X $\qquad$ : Limit suppression   0 : No action   1: Overcurrent suppression action   2: Overvoltage suppressor action   3: Undervoltage suppression action			
d0.0.09	Command Value Frequency ( frequency)	$-300.00 \mathrm{~Hz} \sim 300.00 \mathrm{~Hz}$	0.01 Hz		R
d0.0.10	Command Value Rotation Speed (Revolution )	-30000~30000rpm	1 rpm		R
d0.0.11	Torque command value (set input)	-300.0~300.0\%	0.1\%		R
d0.0.12	Target frequency External Input (integrator input)	$-300.0 \mathrm{~Hz} \sim 300.00 \mathrm{~Hz}$	0.01 Hz		R
d0.0.13	Target Rotation Speed External Input (integrator input)	-30000~30000rpm	1rpm		
d0.0.14	Output Speed Variation	-3200~3200rpm	1 rpm		
d0.0.15	Output Torque Variation	-300.0~300.0(\%)	0.1\%		
d0.0.16	Course PID setting	-100.0~100.0(\%)	0.1\%		
d0.0.17	Course PID feedback	-100.0~100.0(\%)	0.1\%		
d0.0.18	Course PID deviation	-100.0~100.0(\%)	0.1\%		
d0.0.19	Course PID output	-100.0~100.0(\%)	0.1\%		
d0.0.20	High Speed PID setting	-100.0~100.0(\%)	0.1\%		
d0.0.21	High Speed PID feedback	-100.0~100.0(\%)	0.1\%		
d0.0.22	High Speed PID deviation	-100.0~100.0(\%)	0.1\%		
d0.0.23	High Speed PID output	-100.0~100.0(\%)	0.1\%		
d0.0.24	Total running time (H)	0~65535h	1h		
d0.0.25	Total power-on time (H)	0~65535h	1h		
d0.0.26	Power-on (hh.mm.s) cycling timing	00.00.0~23.59.9	1		
d0.0.27	Kilowatthour counter (low)	0~1000.0KWh	0.1KWh		
d0.0.28	Kilowatthour counter (high)	0~60000KKWh	1KKWh		
d0.0.29	Megawatt hour counter	0~60000 MWh	1 MWh		

## 6．2．55 AUXILIARY STATUS PARAMETER

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
d0．1．30	Set Value Frequency Source 1	$0.0 \sim 300.00 \mathrm{~Hz}$	0.01 Hz	－	R
d0．1．31	Set Value Frequency Source 2	$0.0 \sim 300.00 \mathrm{~Hz}$	0.01 Hz	－	R
d0．1．32	External Hz／RPM Input Value	$-300.0 \mathrm{~Hz} \sim 300.00 \mathrm{~Hz}$	0.01 Hz	－	R
d0．1．33	Determinant Synchronous Frequency	$-300.0 \mathrm{~Hz} \sim 300.00 \mathrm{~Hz}$	0.01 Hz	－	R
d0．1．34	Actually Detected Rotation Speed Value	－30000～30000rpm	1 rpm	－	R
d0．1．35	Inverter overload integrator value	$0 \sim 1020$	1	－	
d0．1．36	Standard PID set variable （physical quantity）	0．01～60000	0.01	－	R
d0．1．37	Standard PID feedback variable（physical quantity）	0．01～60000	0.01	－	R
d0．1．38	High Speed PID set Value（physical quantity）	0．01～60000	0.01	－	R
d0．1．39	High Speed PID feedback Value （physical quantity）	0．01～60000	0.01	－	R
d0．1．40	Torque current	－3000．0～3000．0A	0．1A	－	R
d0．1．41	Excitation current	0．0～3000．0A	0．1A	－	R
d0．1．42	Drive Temperature Sensor 1	0～150．0 ${ }^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	－	R
d0．1．43	Drive Temperature Sensor 2	0～150．0 ${ }^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	－	R
d0．1．44	Drive Temperature Sensor 3	$0 \sim 150.0^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	－	R
d0．1．45	Motor temperature	0～250．0 ${ }^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	－	R

## 6．2．56 MODBUS FIELDBUS STATUS PARAMETER（STANDARD EXPANSION I／O CARD）

Function   Code	Name	Setting Range and   Description	Minimum   Unit	Factory   Default	Change   Limit
d 0.2 .46	Bus communication set 1	$-10000 \sim 10000$	1		$\mathbf{R}$
d 0.2 .47	Bus communication set 2	$-30000 \sim 30000$	1	$\mathbf{R}$	
d 0.2 .48	Bus command word 1（HEX）	$0 \sim 0$ FFFFH	1	$\mathbf{R}$	
d 0.2 .49	Bus command word 2（HEX）	$0 \sim 0$ FFFFH	1	$\mathbf{R}$	
d 0.2 .50	Bus status word 1（HEX）	$0 \sim 0$ FFFFH	1	$\mathbf{R}$	
d 0.2 .51	Bus status word 2（HEX）	$0 \sim 0$ FFFFH	1	$\mathbf{R}$	
d 0.2 .52	Total Bus information	$0 \sim 65535$	1	$\mathbf{R}$	
d 0.2 .53	Number of bus CRC check   errors	$0 \sim 65535$	$\mathbf{R}$		
d 0.2 .54	Amount of Bus Misdata   Recieved	$0 \sim 65535$	$\mathbf{R}$		
d 0.2 .55	Amount of Vaild Bus Data	$0 \sim 65535$		$\mathbf{R}$	

### 6.2.57 TERMINAL STATUS AND VARIABLE

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
d1.0.00	Terminal input (DI1~DI9)	Segment marker	-	-	R
d1.0.01	Terminal input (EDI1~EDI10)	Segment marker	-	-	R
d1.0.02	Pulse input (Fin)	$0.0 \sim 100.00 \mathrm{KHz}$	0.01		R
d1.0.03	Analog input Al1	0.00~10.00V	0.01		R
d1.0.04	Analog input Al2	0.00~20.00mA	0.01		R
d1.0.05	Analog input AI3	-10.00~10.00V	0.01		R
d1.0.06	Digital outputs (DO1~DO4, EDO1~ EDO6)	Segment marker	-	-	R
d1.0.07	Relay outputs (RO1~RO4, ERO1~ERO6)	Segment marker	-	-	R
d1.0.08	Pulse Output Fout (indicating the duty ratio in the case of PWM signal output)	0.0~100.0KHz	0.01		R
d1.0.09	Analog output AO1	0.00~10.00V	0.01		R
d1.0.10	Analog output AO2	0.00~10.00V	0.01		R


$50.00 \mathrm{~Hz}$   Main monitor	$0.0 \mathrm{~A}$   Auxiliarymonitor1	$50.00 \mathrm{~Hz}$   Auxiliary monitor2
Operation st	tatus	II
d1.0.00:Function code $\|\|\|\|\|\|\|\|\|l\|$$\|$		

Figure 6-1 Terminal effective sketch

As shown in figure 6-1, DI1, DI2, DI6 DI8 terminal input is in effective status, and other terminals are at void status.

### 6.2.58 COUNTER TIMER VALUE

Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
d 1.1 .11	Current Value of Counter 1	$0 \sim 65535$	1		$\mathbf{R}$
d 1.1 .12	Current Value of Counter 2	$0 \sim 65535$	1	$\mathbf{R}$	
d 1.1 .13	Current Value of Timer 1	$0 \sim 65535$	1	$\mathbf{R}$	
d 1.1 .14	Current Value of Timer 2	$0 \sim 65535$	1		$\mathbf{R}$
d 1.1 .15	Current Value of Timer 3	$0 \sim 65535$	1	$\mathbf{R}$	

### 6.2.59 SPINDLE CONTROL AND SCALE POSITIONING STATUS PARAMETER

Function   Code	Name	Setting Range and Description	Minimum   Unit	Factory   Default	Change   Limit
d 1.2 .16	Encoder (PG installation shaft)   position angle	$0 \sim 359.9$		$\mathbf{R}$	
d 1.2 .17	Encoder (PG installation   shaft ) travelling circle number	$0 \sim 65536$		$\mathbf{R}$	
d 1.2 .18	Accumulative number of   position pulse s(low)	$0 \sim 65535$		$\mathbf{R}$	
d 1.2 .19	Accumulative number of   position pulses (middle)	$0 \sim 65535$		$\mathbf{R}$	
d 1.2 .20	Progressive distance	$0.0 \sim 5000.0 \mathrm{~mm}$		$\mathbf{R}$	
d 1.2 .21	Number of position setting   pulse (lower)	$0 \sim 65535$		$\mathbf{R}$	
d 1.2 .22	Number of position setting   pulse (middle)	$0 \sim 65535$	$\mathbf{R}$		
d 1.2 .23	Number of position setting   pulse (upper)	$0 \sim 65535$			

### 6.2.60 EQUIPMENT INFORMATION

Function Code	Name	Setting Range and Description	Minimum Unit	Factory Default	Change Limit
d1.4.40	Expansion Card Access Information	___X: Reserved $\qquad$ $X_{\text {_ }}$ : Standard expansion board   0: Not connected 1: Connected $X_{-}$: Functional expansion board 1   0: Not connected   1~F: Connected (the value stands for the type of expansion board) X $\qquad$ : Functional expansion board 2   0: Not connected 1~F: Connected ( the value stands for the type of expansion board)	1	-	R
d1.4.41	Total of Panel Comms Info	0~65535	1	-	R
d1.4.42	Number of panel communication CRC check errors + number of errors accepted	0~65535	1	-	R
d1.4.43	Total of Panel Comms Effective Info	0~65535	1	-	R
d1.4.44	Equipment model	Reserved	1	-	R
d1.4.45	Equipment capacity	0.1~1000.0KW	0.1 KW	-	R
d1.4.46	Motherboard program version (H)	7000~7999	1	-	R
d1.4.47	Reserved		1	-	R
d1.4.48	Motherboard check date (H)	2009~2100	1	-	R
d1.4.49	Motherboard check date (H)	0101~1231	1	-	R
d1.4.50	Motherboard check serial number	$0 \sim 50000$	1	-	R

## TABLE 1：COMPARISON TABLE OF MULTIFUNCTIONAL TERMINAL （DI／EDI／SDI）FUNCTIONS

S／N	Function	S／N	Function
0	No function	1	Multi－speed control 1
2	Multi－speed control 2	3	Multi－speed control 3
4	Multi－speed control 4	5	FWD jog
6	REV jog	7	Forward（FWD）running command terminal
8	Reverse（REV）running command terminal	9	Acceleration and deceleration time selection 1
10	Acceleration and deceleration time selection 2	11	Running command switching
12	Frequency command switching	13	Fault resetting input（RESET）
14	Emergency stop（EMS）	15	Frequency or Standard PID set value ascending（UP）
16	Frequency or Standard PID set value descending（DW）	17	UP／DW set frequency clear
18	External equipment fault	19	Three wire running control
20	Stop DC braking command	21	Acceleration and deceleration forbidden
22	Standard PID effective	23	Simple PLC multi－stage running effective
24	Swing frequency running effective	25	High Speed PID effective
26	Simple PLC multi－stage running status （when stopping ）resetting	27	Swing frequency status resetting（effective when stopping）
28	Multi－stage Standard PID giving terminal 1	29	Multi－stage Standard PID giving terminal 2
30	Multi－stage Standard PID giving terminal 3	31	Standard PID setting selection（switching）
32	Standard PID feedback selection（switching）	33	Standard PID sleep activation
34	Torque／speed control mode switching	35	Minimum torque limiting set value selection
36	Maximum torque limiting set value selection	37	Zero－torque tracking free run
38	Load dynamic balancing effective	39	linkage set condition input
40	RS485 external／Standard operation panel control switching	41	Load motor switching
42	Start permission	43	Running permitted
44	Counter 1 clock terminal	45	Counter 2 clock terminal
46	Counter 1 trigger signal	47	Counter 2 trigger signal
48	Counter 1 resetting terminal	49	Counter 2 resetting terminal
50	Counter 1 gated signal	51	Counter 2 gated signal
52	Timer 1 trigger signal	53	Timer 2 trigger signal
54	Timer 3 trigger signal	55	Timer 1 resetting
56	Timer 2 resetting	57	Timer 3 resetting
58	Timer 1 gated signal	59	Timer 2 gated signal
60	Timer 3 gated signal	61	Single pulse accumulative length value resetting
62	Motor temperature detection contact input	63	High Speed PID parameter selection1
64	High Speed PID parameter selection2	65	Magnetic flux brake
66	Position pulse counting（PG pulse counting	67	Automatic shifting（Spindle shifting jog


S／N	Function	S／N	Function
	accumulation）resetting		running）
68	Servo pulse command direction（Fin）	69	Servo control effective
70	Spindle positioning origin photoelectric signal   input	71	Spindle origin homing
72	Spindle positioning selection 1	73	Spindle positioning selection 2
74	Spindle positioning selection 3	75	Position gain selection
76	Reserved	77	Servo command pulse value clear
78	low speed servo torque compensation	$79 \sim 96$	Reserved（Functional Expand Card）
97	$0.1 H z \sim 100.00 H z ~ p u l s e ~ i n p u t ~(D I 9 / F i n ~$   Effective）	98	1．0Hz～1000．0KHzpulse input（DI9／Fin   Effective）

TABLE 2：COMPARISON TABLE OF MULTIFUNCTIONAL OUTPUT TERMINAL（DO／EDOISDO）VARIABLES

S／N	Function	S／N	Function
0	No definition	1	Inverter running ready（normal voltage，no emergency stop input）
2	Inverter is running	3	Equipment normal（fault－free running）
4	Equipment fault（trip）	5	Equipment alarm
6	Equipment fault or alarm	7	REV running
8	Running command input（irrelevant with start or running signal）	9	Running with zero frequency
10	Speed not at zero	11	Inverter undervoltage stop
12	Terminal control effective	13	In the process of acceleration running
14	In the process of deceleration running	15	Braking power generation running status
16	Determined by standard MODBUS Fieldbus	17	Determined by Extended communication module
18	Reserved	19	Completion of current stage of multi－stage running（ 0.5 s pulse ）
20	Multi－stage running completed（ 0.5 S pulse ）	21	Multi－stage running completed（continuous level output）
22	Multi－stage running cycle completed （0．5Spulse ）	23	Swing frequency upper and lower limit
24	Encoder direction positive （A pulse surpassing B pulse ）	25	Decoder direction negative（ $A$ behind $B$ ）
26	Monitor 1 input variable below the lower limit（Void when above the upper limit）	27	Monitor 1 input variable above the upper limit（void when below the lower limit）
28	Monitor 1 input variable between the upper limit and the lower limit	29	Monitor 2 variable below the lower limit（void when above the upper limit）
30	Monitor 2 input variable above the upper limit（void when below the lower limit）	31	Monitor 2 input variable between the upper limit and the lower limit
32	Monitor 3 input variable below the lower limit（void when above the upper limit）	33	Monitor 3 input variable above the upper limit（void when below the lower limit）
34	Monitor 3 input variable between the upper limit and the lower limit	35	Position or spindle orientation position reached


S/N	Function	S/N	Function
36	Analog input Al1 wire breakage detection   effective	37	Analog input Al2 wire breakage detection   effective
38	Analog input Al3 wire breakage detection   effective	39	Reserved
40	Counter 1 output signal 1	41	Counter 1 output signal 2
42	Counter 2 output model 1	43	Counter 2 output signal 2
44	Timer 1 output signal 1	45	Timer 1 output signal 2
46	Timer 2 output signal 1	47	Timer 2 output signal 2
48	Timer 3 output signal 1	49	Timer 3 output signal 2
50	Extension modules retained	53	Extension modules retained
52	Extension modules retained	55	DI1 terminal status effective
54	Extension modules retained	57	DI3 terminal status effective
56	DI2 terminal status effective	61	DI7 terminal status effective
58	DI4 terminal status effective	63	Terminal as frequency output (only applicable   to DO3/Fout terminal)
60	DI6 terminal status effective	65	SDO2 Logic
62	DI8 terminal status effective	67	SDO3 $\odot$ SDO4 (logic or)
64	SDO1 Logic	69	SDO3 $\oplus$ SDO4 (logic or)
66	SDO1 $\odot$ SDO2 (logic and)	71	SDO7 $\oplus$ SDO8 (logic or)
68	SDO5 $\odot$ SDO6 (logic and)		
70	SDO5 $\oplus$ SDO6 (logic or)		

TABLE 3: COMPARISON TABLE OF MONITOR VARIABLES

S/N	Monitoring Parameter Variable	$100 \%$ full-scale output
0	Output frequency (rotor synchronous frequency)	Upper limiting frequency
1	Motor Revolution	Upper limiting frequency*60/pairs of motor poles
2	Output current	$250 \%^{*}$ Inverter rated current
3	Output torque	$300 \%$ rated torque
4	Output voltage	Motor rated voltage (reference voltage in VF mode)
5	Output power	$2^{*}$ motor rated power
6	Maximum temperature of the equipment	$150.0^{\circ} \mathrm{C}$
7	Voltage at the DC side	1000 V (single phase 500 V )
8	Motor temperature/ PTC resistance	$500.0^{\circ} \mathrm{C} / 5000$ Ohm
9	Frequency setting channel set value	Upper limiting frequency
10	Speed command	Upper limiting frequency*60/pairs of motor poles
11	Torque command	$300 \%$ rated torque
12	Target operating frequency	Upper limiting frequency
13	Reserved	-
14	Speed adjuster deviation	Upper limiting frequency*60/pairs of motor poles
15	Speed adjuster output	$300.0 \%$
16	Standard PID setting	$100.0 \%$
17	Standard PID feedback	$100.0 \%$


S/N	Monitoring Parameter Variable	$100 \%$ full-scale output
18	Standard PID deviation value	$200.0 \%$
19	Standard PID output	$100.0 \%$
20	High Speed PID setting	$100.0 \%$
21	High Speed PID feedback	$100.0 \%$
22	High Speed PID deviation	$200.0 \%$
23	High Speed PID output	$100.0 \%$
24	Al1 input (0.00~10.00)	10.00 V
25	Al2 input (0.00~20.00)	20.00 mA
26	Al3 input (-10.00~10.00)	10.00 V
27	Fin input	Maximum input frequency
28	Current liner speed (Fin calculation)	Maximum permitted liner speed
29	Accumulative counted length ( liner speed   accumulation)	Maximum counted length
30	Counter 1 value	Counter 1 set value 2
31	Counter 2 value	Counter 2 set value 2
32	Timer 1 value	Timer 1 timing cycle
33	Timer 2 value	Timer 2 timing cycle
34	Timer 3 value	Timer 3 timing cycle
35	Built-in Fieldbus set value 1	10000
36	Extended communication module set value 1	10000
37	Built-in Fieldbus set value 2	30000
38	Extended communication module set value 2	30000
$39 \sim 44$	Reserve	20.00 mA (10.00V)
45	Fixed output (current or voltage)	

## 7. DETAILED FUNCTION INSTRUCTIONS

Remark: Unless especially instructed, the status of terminals will be defined under positive logic conditions ("ON" terminals effective, and "OFF" terminals void).

### 7.1 SYSTEM MANAGEMENT (GROUP F0.0)

Group F0.0 parameters are especially used to define system control parameters, e.g. locking, initializing, motor type and control mode as well as display of monitoring parameters, etc.

| F0.0.00 | Macro parameters | Setting range: 0000~2005 |
| :--- | :--- | :--- | Factory default: 0000

Macro parameters include application macro, system macro and configuration macro; the application macro allows for conveniently setting and curing multiple common parameters and simplifying parameter setting for general applications; the system macro allows for conveniently switching equipment's work mode and automatically defining partial parameters; the special macro allows for internal integration and settings for special functions or parameters with one key according to typical industrial applications.
Macro parameters are not influenced by the initializing parameter F0.0.07 and partial macro-related parameters are locked at specific value or within specific range.

The unit: Application macro

## 0: Void

Customized settings, all parameters can be customized without being influenced by the application macro parameters.

## 1: Digital setting of panel operation

Refer to Figure 7-1 for the application wiring diagram, and refer to Table 7-1 for macro-related parameters.

## 2: Shuttle setting panel operation

Refer to Figure 7-1 for the application wiring diagram, and refer to Table 7-1 for macro-related parameters.

DI5	Fault resetting input (RESET)
CM	Digital input public address

Figure 7-1 Wiring diagram for panel operation digital/Shuttle setting

## 3: Two-Line Control 1/Al1 Setting

Refer to Figure 7-2-A for the application wiring diagram, and refer to Table 7-1 for macro-related parameters.


Figure 7-2-A Two-line control 1/Al1 setting wiring diagram

## 4: Two-Line Control 2 /Al1 Setting

Refer to Figure 7-2-B for the application wiring diagram, and refer to Table 7-1 for macro-related parameters.


Figure 7-2-B Two-line control 2/AI1 setting wiring diagram

## 5: Three-line control 1/Al1 setting

Refer to Figure 7-3 for the application wiring diagram, and refer to Table 7-1 for macro-related parameters.


Figure 7-3 Three-line control 1/Al1 setting wiring diagram
Table 7-1 Table Application Macro Association Self-Setting Parameters

Parameters	Application   Macro 1	Application   Macro 2	Application   Macro 3	Application   Macro 4	Application   Macro 5	Remarks
F0.1.15	0	0	0	0	0	Locked
F0.1.16	0	0	0	0	0	Locked
F0.1.18	1.00	1.00	1.00	1.00	1.00	Locked
F0.2.25	$2(0 \sim 2)$	3	9	9	9	Locked
F0.3.33	0	0	1	1	1	Locked
F0.3.35	-	-	0	1	2	Locked
F0.4.37	0	0	0	0	0	Locked
F0.4.38	0	0	0	0	0	Locked
F3.0.01	-	-	-	-	19	Locked
F3.0.02	-	-	7	7	7	Locked
F3.0.03	-	-	8	8	8	Locked
F3.0.04	13	13	13	13	13	Locked
F6.1.15	0	0	0	0	0	Relocatable
F6.2.46	0	0	0	0	0	Relocatable


Parameters	Application   Macro 1	Application   Macro 2	Application   Macro 3	Application   Macro 4	Application   Macro 5	Remarks
F7.0.00	0	0	0	0	0	Relocatable
F8.0.00	0	0	0	0	0	Relocatable
F9.0.00	0	0	0	0	0	Relocatable
FA.2.25	0	0	0	0	0	Relocatable

## Kilobit: System macro (0~F)

The system macro cannot be modified unless correct modification password [F0.0.02] is set. Refer to the instructions of F0.0.02 parameter for details. Modification of system macro will automatically lead to initialization of all functional parameters (Group FF parameters will not be initialized unless FF. 0.00 allows for initialization).

## 0 : Standard operation mode

## 1: Steady load operation

It is applicable to steady load (e.g. fan and pump load). In this mode, the load capacity of the equipment will be automatically increased by one power grade, and the initialization value of motor parameters will be also automatically increased by one function grade.

## 2:Reserved

F0.0.01 Parameter display and modification (H)

Setting range: 0000~9014
Factory default: 0001

The unit: Parameter display mode

## 0: Display all parameters

## 1: Display effective configuration parameters

To automatically hide the parameters irrelevant with current command or hardware according to different parameter setting commands or different current hardware configuration (e.g. various expansion boards), so as to simplify field commissioning.
$>\quad$ F0.0.00 and F0.0.01 are not limited by the parameter display mode, and will not be concealed in any display mode. The panel displaying parameters concealed due to parameter display mode will not influence the access to the concealed parameter via communication port.

## 2: Display parameters different from factory default

3: Display modified and stored parameters after power-on this time

## 4: Display modified and un-stored parameters after power-on this time

## Tens: Parameter modification mode

The macro parameter F0.0.00 is also limited by this function.

## 0 : Effective and permanently stored after modification

Parameters modified will be immediately stored in the memory and permanent saved, and will not lose after power-off.

## 1: Effective after modification but not stored, and getting lost after power-off

Parameters modified are effective but are not saved in the memory. And parameters modified will automatically restore to the values saved in the memory after completion of relevant operation or power-off. This function is used for tentative modification of undetermined parameters for field commissioning; After commissioning, all modified and unsaved parameters can be displayed for view separately (when the unit of this parameter is set to 4), and batch recovery or batch storage will be conducted (when the kilobit of this parameter is set to 2 or 5 ).

## Kilobit: Batch recovery or batch storage of parameters

The macro parameter F0.0.00 is not subject to the influence of this function.

## 2: Abandon modifying all un-saved parameters restoring to original value

All unsaved parameters will be rapidly restored to the values stored in the memory with one key.
This function can only be used when the device is stopped. If this function is activated when the device is running, the inverter will send alarm aL. 058 and give up operation.

## 5: Batch storing all modified and unsaved parameters

All modified and unsaved parameters will be saved in the memory.

## 9: Resume all parameters to initial values at the last power-on

To restore all parameters to the initial values at the last power-on. Even after initialization, all parameters can be restored to the preliminary power-on values with this function. This function is used to make correction during field commissioning when the system works abnormally because no one knows which parameter is modified incorrectly at the current power-on. This function can only be used when the device is stopped. If this function is activated when the device is running, the inverter will send alarm aL. 059 and give up operation.

F0.0.02 System macro parameter   modification password	Setting range: 0~65535	Factory default: 0

For modifying the system macro setting (kilobit) of the macro parameter F0.0.00, the modification password 1580 must be entered. This password will automatically disappear after 30 seconds. The macro parameter cannot be modified once within 30 seconds upon input of the password. If it is intended to make modification once again,the password should be entered again.

F0.0.04 LCD display setting (H)	Setting range: 0000~0037	Factory default: 0023

This function is only effective for the operating panel equipped with LCD.

## Tens: Normal display mod

## 0 : Steady mode

## 1: Single parameter display

The LCD panel will only display the status parameters set for F0.0.12 in the normal monitoring mode.

## 2: Dual parameter display

The LCD panel will display the status parameters set for F0.0.12 and F0.0.13 in the normal monitoring mode.

## 3: Three parameter display

The LCD panel will display the status parameters set for F0.0.12, F0.0.13 and F0.0.14 in the normal monitoring mode.

F0.0.05 Parameter locking (H)	Setting range: 0000~0012	Factory default: 0000
F0.0.06 Parameter locking   password	Setting range: 0~65535	Factory default: 0

After presetting password ,this parameter can only be modified by correct password. And if after the parameter locking is effective, during modification of the locked parameter, LED panel will display "---"; LCD panel will prompt "password locked and modification forbidden". This function is used to forbid modification of functional parameters by unauthorized personnel.

The password setting will take effect if OK key is pressed down within 30 seconds. If no confirmation (OK key) is conducted beyond $\mathbf{3 0}$ seconds or any other key is pressed down within $\mathbf{3 0}$ seconds, the password setting will be given up. The sketch of locking operation is as below:


Figure 7-4 Parameter locking flow
Enter preset password and then press OK, and then the parameter locking status will be relieved. The sketch of unlocking operation is as below:


Figure 7-5 Parameter unlocking flow

| F0.0.07 | Parameter initialization | Setting range: 0~8 |
| :--- | :--- | :--- | Factory default: 0

When the macro parameter $\mathbf{F 0 . 0 . 0 0}$ is effective, the self-setting parameter relevant with the macro will not be influenced by the initialization. Refer to the function description of F0.0.00.

FF group parameters will not be initialized by this parameter until the kilobit of FF. 0.00 parameter is set to 1 .

| F0.0.08 Parameter copying (H) | Setting range: 0000~0013 | Factory default: 0000 |
| :--- | :--- | :--- | :--- |

The unit: Upload and download operation
0 : No action

## 1: Parameter upload

The inverter will upload parameter values in the control board memory to the panel memory.

## 2: Parameter download

The parameter values in the panel memory will be downloaded to the control board memory.

## 3: Parameter download (except for F2 group parameters)

The parameter values in the panel memory will be downloaded to the control board memory (motor parameters will not be downloaded).

Note: When the inverter is running, the action of upload and download is forbidden, and the setting for this parameter will not take effect.

During parameter upload and download, all keys except for STOP key on the panel are temporarily locked. Press STOP key to forcedly terminate upload and download; When the unload operation is forcedly terminated, the parameters uploaded will be stored in the panel memory, and the parameters not unloaded will be kept unchanged; When the download operation is forcedly terminated, the inverter will give up all parameters already downloaded into the control board memory, and automatically restore to the values before download.

The alarm signal relevant with this parameter is as below:
aL. 071 - Parameter unload failed. Uploaded parameters will be saved in the panel memory, and parameters not uploaded will be kept unchanged.
aL. 072 - Uploaded parameter storage failed. The panel memory is damaged or the memory is unavailable.
aL. 073 - The board memory parameters are forbidden to be weitten and can not download parameter.
aL. 074 - Parameter download failed. Terminate the parameter download process, and all parameters downloaded will be automatically restored to the values before download.
aL. 075 - The board memory parameters are not consistent with the frequency inverter parameters in terms of the version.
aL. 076 - There are no effective parameters in the board memory.
aL. 077 - Some set values among the panel parameters are out of the allowable range. Terminate the parameter download process, and all parameters downloaded will be automatically restored to the values before download.

F0.0.09 Selection of motor type   and control mode (H)	Setting range: 0000~3131	Factory default: 0000

## The unit: Motor type 1 selection

## 0 : Induction asynchronous motor

1: Conical motor
2: Permanent magnet synchronous motor

## Tens:Control Mode of motor 1

0 : SVC (open-loop vector control) mode

The vector control operation mode without the speed sensor features low frequency, high torque, steady speed and high precision. It can precisely control the motor's speed and torque, and is often used in the occasion in which V/F control mode cannot meet the requirements of high-performance universal variable speed drive.

## 1: VC (closed-loop vector control) mode

The vector control operation mode with the speed sensor is applicable to the accusation in which the torque response is faster and the control precision of torque and speed is higher. It enables for certain precision of position control so as to achieve control over simple servo positioning in the process of dragging the asynchronous motor. When dragging the synchronous motor, high precision of position service control (optional function) can be achieved.

## 2: V/F control

It refers to the constant control voltage/frequency ratio. It can be used to the occasion in which the performance is not required to be very high, and is also applicable to the occasion in which single inverter drives several motors.

## 3: V/F separated control

It is used for special application occasions, and is also applicable to V/F separated control for torque motors. In this mode, the output voltage and output frequency of the inverter have no connection with each other, and are set separately by users.

In the case of V/F separated control, F0.2.25 is forcedly set to the frequency preset channel, and F0.2.26 is forcedly set to the voltage giving channel.

Note: This control mode cannot be used for common asynchronous motors and synchronous motors. The equipment may be damaged if this mode is mistakenly set.

## Hundreds: Motor 2 type selection

## 0 : Induction asynchronous motor

## 1: AC asynchronous servo motor

## 2: Permanent synchronous motor

It is a must to make correct setting according to the actually driven motors.

## Kilobit: Control mode of motor 2

The same as the tens.

F0.0.11 Selection of panel key   functions (H)	Setting range: 0000~0224	Factory default: 0000

The unit: Locking of panel keys
After the key locking function is set with this function, the locking will not take effect until ESC key is pressed to back to the normal control mode. For details, please refer to 5.2 Basic Functions and Operating Methods of the Panel.

## 0 : Not locked.

All keys are effective on the operating panel.

## 1: All keys except for UP/DW (shuttle), STOP and RUN are locked.

Only UP/DW (shuttle), STOP and RUN keys on the operating panel are effective.
2: All keys except STOP and RUN are locked.

Only the STOP and RUN keys on the operating panel are effective.

## 3: All keys except STOP are locked.

Only the STOP key on the operating panel is effective.

## 4: Locking all keys.

All keys are void on the operating panel.

## Tens: Function of STOP key.

## 0 : The modes other than the panel control are void.

Only when the running command channel is the operating panel is it effective to press down the STOP key.

## 1: Press STOP key in any control mode for deceleration stop.

No matter the running command preset channel is the operating panel, external terminals or the communication port, when STOP key is pressed, the inverter will control the motor to achieve deceleration stop according to the current effective deceleration time. The priority of this stop mode is higher than that of parameter F0.4.38.

## 2: Press STOP key in any control mode for free stop.

No matter the running command preset channel is the operating panel, external terminals or the communication port, when STOP key is pressed, the inverter will stop output, and the motor stop in free sliding mode. The priority of this stop mode is higher than that of parameter F0.4.38.

## Hundreds: Function of PANEL/REMOTE keys

When the functional setting of PANEL/REMOTE keys is effective, and in the normal monitoring mode, the PANEL/REMOTE keys can be used to switch the running command channel. The switching status is not saved, and will get lost after power-off. The running command channel for the inverter is still the operating panel after power-on once again.

If PANEL/REMOTE keys are used to circularly switch to desired running command channel, it is required to press "OK" key for confirmation within $5 \mathbf{s}$. Otherwise, it will not get effective.

The switching sequence of the running command channel: Operating panel running command channel (PANEL/REMOTE light on) $\rightarrow$ external terminal operating running command channel (PANEL/REMOTE light off) $\rightarrow$ communication port running command channel (PANEL/REMOTE light off) $\rightarrow$ operating panel running command channel (PANEL/REMOTE light on).

## 0: Void

The running command channel cannot be switched with PANEL/REMOTE key.

## 1: Effective at stop

PANEL/REMOTE key is effective at the stop status, but it is void to switch the running command channel with this key when the device is running.

## 2: Continuous effective

PANEL/REMOTE keys can be used to switch the running command channel both at the stop and running status.


> The command channel switching at the running status of the inverter should be used carefully. Be sure the safety before operation. If the running command (FWD/REV/JOG) after switching is inconsistent with that before switching, the inverter will change its current running status (stop, run or REV), which may cause accident.

F0.0.12 Principal monitoring   parameter (H)	Setting range:   d0.00~d0.55 / d1.00~d1.55	Factory default: d0.00
F0.0.13 Auxiliary monitoring   parameter $1(\mathrm{H})$	Setting range:   d0.00~d0.55 / d1.00~d1.55	Factory default: d0.02
F0.0.14 Auxiliary monitoring   parameter $2(H)$	Setting range:   d0.00~d0.55 / d1.00~d1.55	Factory default: d0.09

This group of parameters is used to determine display contents on the operating panel at the status monitoring mode, and bitwise operation must be followed for setting.

The Principal monitoring parameter is used to determine display contents on the main display column of the LED panel, or the first display parameter on the LCD panel (signal parameter display).

The auxiliary monitoring parameter $\mathbf{1}$ is used to determine display contents on the auxiliary display column of the LED panel, or the second display parameter on the LCD panel (dual parameter display) when the inverter is running.

The auxiliary monitoring parameter $\mathbf{2}$ is used to determine display contents on the auxiliary display column of the LED panel, or the third display parameter on the LCD panel (three parameter display) when the inverter is stopped.

The corresponding physical quantity of the display data can be referred to the status monitoring parameter table. When the inverter is conducting detection of motor parameters, the auxiliary display will display the value of the current output current, which is not restricted by the parameter F0.0.13.

### 7.2 RUNNING COMMAND SELECTION (GROUP F0.1)

F0.1.15 Selection of running   command source	Setting range: 0,1,2	Factory default: $\mathbf{0}$

This function defines three kinds of modes for selecting the control command source, as shown in Figure 7-7:


Figure 7-6 Sketch of selecting the control command sources
F0.1.16 Selection of frequency set value $\quad$ Setting range: 0~14 $\quad$ Factory default: $\mathbf{0}$

The A510 series inverter has two frequency setting sources (corresponding parameters F0.2.25, F0.2.26). This parameter determines 14 kinds of combined calculation methods for the two frequency setting sources. Figure 7-7 shows the structure sketch of the frequency setting channel.

The actual running direction of the inverter is the result of "XOR" between the set value direction (always being FWD direction for single polarity setting) and the running command direction.


Figure 7-7 Structure sketch of frequency setting channel

## 0 : Frequency setting source 1 is independently effective

The frequency setting source 1 is independently effective. In this case, the frequency set value is solely determined by the frequency setting source 1 and is named as the set value 1 .

## 1: Frequency setting source $\mathbf{2}$ is independently effective

The frequency setting source $\mathbf{2}$ is independently effective. In this case, the frequency set value is solely determined by the frequency setting source 2 and is named as the set value 2 .

## 2: Selection of multifunctional input terminal (Function No. 12)

The frequency setting source is selected by the functional input terminal (Function No. 12) and the terminal function is set with F3.0 group parameters.

## 3: Bound with the start-stop command channel

The selection of frequency setting source is bound with the start-stop command. In this case, the running command source is bound with the frequency setting source. That is to say, if the running command source 1 is effective, the frequency setting source $\mathbf{1}$ is also effective; And if the running command source $\mathbf{2}$ is effective, the frequency setting source $\mathbf{2}$ is effective as well.

## 4: Frequency setting source 1+frequency setting source 2

Frequency set value = set value $1+$ set value 2
The frequency combination curves under different status are shown as below:


Figure 7-8-A Frequency combination sketch 1

[^0]
## 5: Frequency setting source $1^{*}$ (1+frequency setting source $2 /$ frequency setting source 2 maximum value)

Frequency set value = set value 1* (1+set value 2 /[F0.2.31])
The sketch of frequency combination setting is shown as below:


Figure 7-8-B Frequency combination sketch 2

( b )

(C)

Figure 7-8-C Frequency combination sketch 3
> The combination result will only be in bipolarity when only two setting sources are set in bipolarity way. (Figure c)

## 7: Frequency setting source 1* (1-frequency setting source 2/frequency setting source $\mathbf{2}$ maximum value)

Frequency set value = set value $1^{*}$ (1-set value 2 /[F0.2.31])

(a)


Figure 7-8-D Frequency combination sketch 4
$\Rightarrow \quad$ The combination results will only be in bipolarity when the setting source 1 is set in bipolarity way. (Figure b)

## 8: Frequency setting source 1* frequency setting source $2 /$ frequency setting source 2 maximum value)

Frequency set value = set value $1^{*}$ set value 2 /[F0.2.31]


Figure 7-8-E Frequency combination sketch 5
$\Rightarrow$ The combination results will only be in bipolarity when the setting source 1 is set in bipolarity way. (Figure c)

## 9: Max (|frequency setting source 1|, |frequency setting source 2|)

Frequency set value $=\mathbf{M a x}(\mid$ set value 1|, |set value 2|)
The maximum value between the absolute values of set value $\mathbf{1}$ and set value $\mathbf{2}$ is taken as the frequency set value, and the combination value must be unipolar.

## 10: Min (|frequency setting source 1|, |frequency setting source 2|)

Frequency set value = Min (|set value 1|, |set value 2|)
The minimum value between the absolute values of set value $\mathbf{1}$ and set value $\mathbf{2}$ is taken as the frequency set value, and the combination value must be unipolar.

## 11: Sqrt |frequency setting source 1|+sqrt|frequency setting source 2|

Frequency set value = sqrt |set value 1|+sqrt|set value 2|

The frequency set value is the total of the square root of the absolute value of set value 1 and set value $\mathbf{2}$, and the combination value must be unipolar.

## 12: Sqrt (frequency setting source 1+frequency setting source 2 )

Frequency set value = Sqrt |set value 1+set value 2|
The frequency set value is square root of the absolute value of the total of set value $\mathbf{1}$ and set value 2 , and the combination value must be unipolar.

13: Frequency setting source $1^{*}$ coefficient $1+$ frequency setting source 2 *coefficient 2
Frequency set value=set value $\mathbf{1}^{*}[\mathrm{~F} 0.1 .18]+$ set value $\mathbf{2}^{*}[\mathrm{~F} 0.1 .19]$
Only when the two setting channels are both in the mode of bipolar setting, the combination results will show the characteristics of the bipolar setting.

14: Frequency set value=frequency setting source 1 *coefficient 1 -frequency setting source 2 *coefficient 2
Set value 1*[F0.1.18]- set value 2*[F0.1.19] Only when the two setting channels are both in the mode of bipolar setting, the combination results will show the characteristics of the bipolar setting.

Remarks: after selecting the combination way of the frequency set value, the following aspects must be considered in order to get correct frequency set value:
(1). To set F0.2.25 (channel selection for the frequency setting source 1) and F0.2.26 (channel selection for the frequency setting source 2) to determine the given channel of the frequency setting source;
(2). To set F0.1.18 (action coefficient of the frequency setting source 1) and F0.1.19 (action coefficient of the frequency setting source 2) to determine the weighting coefficient of the frequency setting source;
(3). To Set F0.2.27 (minimum set value of frequency source 1) and F0.2.28 (maximum set value of frequency source 1) to limit the range of frequency set value of the frequency source 1, and to set F0.2.30 (minimum set value of frequency source 2) and F0.2.31 (maximum set value of frequency source 2) to limit the range of frequency set value of the frequency source 2 ;
(4.) To set F0.1.21 (upper limiting frequency) and F0.1.22 (lower limiting frequency) to limit the range of the frequency set value.

F0.1.17	Running direction(H)	Setting range: 0000~0021

The unit: Direction switching
0: Void The running direction is controlled by the direction command.
1: Negate The running direction is opposite to that directed by the direction command

## Tens: Direction locking

0: Void The running direction is controlled by the direction command.

## 1: FWD locking

The motor will run in FWD direction no matter the FWD running command or REV running command is given.

## 2: REV locking

The motor will run in REV direction no matter the FWD running command or REV running command is given.

F0.1.20 Maximum output   frequency	Setting range: $10.00 \sim 320.00 \mathrm{~Hz}$	Factory default: 60.00
F0.1.21 Upper limiting   frequency	Setting range: $[F 0.1 .22] \sim M i n$   $(300.00 \mathrm{~Hz},[F 0.1 .20])$	Factory default: 50.00
F0.1.22 Lower limiting   frequency	Setting range: $0.0 \mathrm{~Hz} \sim[\mathrm{F0.1.21]}$	Factory default: 0.0

The maximum output frequency is the allowable output maximum frequency of the inverter as set by users (maximum stator synchronous frequency of the asynchronous motor); the upper limiting frequency is the maximum frequency allowed for running of the asynchronous motor as set by users (the maximum frequency corresponding to the mechanical rotor of the asynchronous motor). The maximum output frequency must be higher than the upper limiting frequency; the lower limiting frequency is the minimum frequency allowed for running of the motor as set by users.

The maximum output frequency, upper limiting frequency and lower limiting frequency shall carefully set according to the actual nameplate parameters and operating status of the controlled motor and. The relationship among the three kinds of frequency is shown in Figure 7-9.


Figure 7-9 Frequency parameter definition sketch

[F1.2.15] in Figure 7-7 represents the motor's reference frequency, and [F1.2.16] represents the motor's reference voltage.

F0.1.23	FWD jog frequency	Setting range: $0.0 \mathrm{~Hz} \sim[F 0.1 .21]$	Factory default:10.00
F0.1.24	REV jog frequency	Setting range: $0.0 \mathrm{~Hz} \sim[F 0.1 .21]$	Factory default:10.00

Jog running is a special running mode of the inverter. No matter the inverter is initially stopped or running, as long as the jog command is inputted, the inverter will transit to the jog frequency according to the preset jog acceleration and deceleration time. However, it is also influenced by the startup frequency and startup frequency duration as well as the functions of DC band-type braking, startup delay and startup pre-excitation.


Figure 7-10 FWD jog running curve

### 7.3 FREQUENCY SETUP (GROUP F0.2)

F0.2.25	Frequency setting source 1	Setting range: 00~31	Factory default: 2
F0.2.26	Frequency setting source 2	Setting range: 00~31	Factory default: 0

The frequency set value determined via the frequency setting source 1 is named as the set value 1; And the frequency set value determined via the frequency setting source $\mathbf{2}$ is named as the set value 2.

## 0: Panel digital setting (maintained after stop)

The frequency set value is determined by the value of the parameter F0.2.29 (or F0.3.32). In the normal monitoring mode, it is applicable to make direct modification with the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys (or shuttle) on the panel. If the modified values has not be saved it will get lost power-on.

## 1: Panel digital setting (zero clearing after stop)

Similar to the case of " 0 " as above, the inverter will automatically clear current set value after stop.

## 2: Panel digital setting (maintained after stop and saved after power-off)

Similar to the case of " $\mathbf{0 , 1}$ " as above, the inverter will automatically save the current set value after power-off, and take the saved value as the initial set value after power-on once again.

## 3: Setting of panel shuttle potentiometer

Its function is equivalent to the high-precision panel potentiometer. The set resolution is the minimum quantitative value (e.g. 0.01 Hz ), and data are saved in the internal memory of the panel.

## 4: Terminal UP/DW setting (maintained after stop)

Multifunctional terminals are used to directly increase, decrease (Function No. 15, 16) or clear (Function No. 17) the set frequency. The terminal function is selected by parameters F3.0.00 ~ F3.0.08. The set data will not be saved and will get lost after power-off.

The relationship between the status setting combination of the three external switches and the current frequency set value of the inverter is shown in Table 7-2.

Preconditions for below instruction: multifunctional terminal DI1 frequency or process PID setting UP function ([F3.0.00]=15), DI2 sets frequency or process PID DW function ([F3.0.01]=16), and DI5 sets UP/DW with frequency clear function ( $[\mathrm{F} 3.0 .04]=17$ ).


Figure 7-11 Terminal UP/DW wiring sketch

Table 7-2 External Switch Status and Current Frequency Set Value of the Inverter

Terminal Status			Set frequency
DI5	DI2	DI1	
OFF	OFF	OFF	Maintained
OFF	OFF	ON	Increased
OFF	ON	OFF	Deceased
OFF	ON	ON	Maintained
ON	Any	Any	Zero

## 5: Terminal UP/DW setting (maintained after stop)

Similar to the case of " 4 " as above, the inverter will automatically clear current set value after stop.

## 6: Terminal UP/DW setting (maintained after stop and saved after power-off)

Similar to the case of " 4 " as above, the set value will be saved automatically after power-off, and the initial set data will be the set value at the last power-off when the inverter is powered on once again.

## 7: Terminal UP/DW two-way setting (maintained in bipolar mode after stop)

The basic operation is slimier to that as stated in "the" and the difference is that: in the mode of " 4 ", the set frequency is unsigned values (not containing direction information), and the setting range of the frequency is: $0 \sim$ upper limiting frequency; while in the mode of " 7 ", the set frequency is signed values (containing direction changing information), and the setting range of the frequency is: - upper limiting frequency upper limiting frequency.

The inverter's actual running direction is according to "XOR" calculation of the command direction (FWD, REV) and the set frequency direction.

## 8: Terminal UP/DW two-way setting (maintained in bipolar mode after stop and saved after power-off)

The basic operation is similar to the case of " 7 " as above. The set value will be saved automatically after power-off, and the initial set data will be the set value at the last power-off when the inverter is powered on once again.

## 9: Analog input Al1

The frequency set value is given via the analog input Al1; For relevant characteristics please see the instructions of the parameters F4.0.00 and F4.0.01.

## 10: Analog input Al2

The frequency set value is given via the analog input Al2; For relevant characteristics please see the instructions of the parameters F4.0.02 and F4.0.03.

## 11: Analog input Al3

The frequency set value is given via the analog input Al3; For relevant characteristics please see the instructions of the parameters F4.0.04 and F4.0.05.

## 12: Given by the analog input Al1 bipolarity

The frequency set value is given by the bipolarity of the analog Al1 ([F4.0.00] ~ [F4.0.01]), and Al1 contains the direction changing information. For relevant characteristics please see the instructions of the parameters F4.0.00 and F4.0.01.

## 13: Given by the analog input Al3 bipolarity

The frequency set value is given by the bipolarity of the analog Al3 ([F4.0.04]~[F4.0.05]), and AI3 contains the direction changing information. For relevant characteristics please see the instructions of the parameters F4.0.04 and F4.0.05.

## 14: Pulse input Fin

The frequency set value is given by the pulse input Fin.

## 15: Given by the pulse input bipolarity

The frequency set value is given by the pulse input Fin bipolarity, and the pulse signal contains the direction changing information.

## 16: MODBUS fieldbus set value 1 (relative set value)

The frequency set value is given by the principal computer through MODBUS fieldbus (RS485 communication port), and the set value $(-10000 \sim 10000)$ is relative data and is corresponding to the upper limiting frequency.

## 17: MODBUS fieldbus set value 2 (absolute set value)

The frequency set value is given by the principal computer through MODBUS fieldbus (RS485 communication port), and the set value ( $-\mathbf{3 0 0 0 0} \mathbf{\sim} \mathbf{3 0 0 0 0}$ ) is absolute value neglecting the decimal point) (e.g. the value 1500 corresponds to the set frequency 150.00 Hz .

## 18: Al1+Al2

The frequency set value $=$ the frequency value corresponding to the analog input Al1 + the frequency value corresponding to the analog input Al2

## 19: Al2+Al3

The frequency set value = the frequency value corresponding to the analog input Al2 + the frequency value corresponding to the analog input Al3

## 20: Al2+pulse input Fin

The frequency set value = the frequency value corresponding to the analog input $\mathbf{A l} \mathbf{2}+$ the frequency value corresponding to the pulse input Fin

## 21: Al1*Al2/rail-to-rail input (10V)

The frequency set value = the frequency value corresponding to Al1 *the frequency value corresponding to $\mathbf{A l 2 / t h e ~ f r e q u e n c y ~ c o r r e s p o n d i n g ~ t o ~ t h e ~ m a x i m u m ~ i n p u t ~ o f ~ A l 2 . ~}$

## 22: Al1/Al2

The frequency set value= the frequency value corresponding to Al1/the frequency value corresponding to Al2.

## 23: Process PID output

The frequency set value is given by the process PID output. This option is mainly for the system in which the PID running output needs to be combined with other setting channel for running. In general running system, this value does not need to be selected. PID output will automatically participate in setting competition according to the frequency setting priority.

## 24: Compensation PID output

The frequency set value is given by the compensation PID output. This option is mainly for the system in which compensation PID running output needs to be combined with other setting channel for running. In general running system, this value does not need to be selected. The compensation PID output will automatically participate in setting competition according to the frequency setting priority.

## 25: Disturbance running frequency

The frequency set value is given by the disturbance running frequency. This option is mainly for the system in which the disturbance running output needs to be combined with other setting channel for running. In general running system, this value does not need to be selected. The disturbance output will automatically participate in setting competition according to the frequency setting priority.

## 26: Automatic multi-sage running frequency

The frequency set value is given by the multi-stage running frequency. This option is mainly for the system in which the multi-stage running output needs to be combined with other setting channel for running. In general running system, this value does not need to be selected. The multi-stage running output will automatically participate in setting competition according to the frequency setting priority.

## 27: Terminal selection multi-stage frequency

The frequency set value is determined by the combination status of the four multifunctional input terminals (function no. 1, 2, 3, 4), and the terminal function is set by the parameters F3.0.00~F3.0.08. This way allows for multi-stage frequency running.

## 28: Virtual analog input SAI1

## 29: Virtual analog input SAl2

The frequency setting source and set value are determined by the virtual input parameter Group F4.4.50 ~ F4.4.54.

30: Extended address bus setting value 1 (set)

## 31: Extended address bus setting value 2 (absolute setting)

When the V/F separation of control, F0.2.25 changes to a given channel frequency, F0.2.26 changes to a given voltage channels..

F0.2.27 Minimum value of   frequency setting source 1	Setting range: $0.0 \mathrm{~Hz} \sim[\mathrm{F0.2.28]}$	Factory default: 0.0
F0.2.28 Maximum value of   frequency setting source 1	Setting range: [F0.2.27]~[F0.1.21]	Factory default: 50.00
F0.2.30 Minimum value of   frequency setting source 2	Setting range: $0.0 \mathrm{~Hz} \mathrm{\sim[F0.2.31]}$	Factory default: 0.0
F0.2.31 Maximum value of   frequency setting source 2	Setting range: [F0.2.30]~[F0.1.21]	Factory default: 50.00

This group of parameters confines the range of frequency allowed to be set for two frequency setting sources.

F0.2.29 Panel digital set value of   frequency setting source 1	Setting range: $0.0 \mathrm{~Hz} \sim[F 0.2 .28]$	Factory default: 0.0
F0.2.32 Panel digital set value of   frequency setting source 2	Setting range: $0.0 \mathrm{~Hz} \sim[\mathrm{F0.2.30]}$	Factory default: 0.0

The frequency command value at the time of panel digital setting can be directly modified with the $\boldsymbol{\Lambda}, \boldsymbol{\nabla}$ keys (or shuttle) on the panel in the normal monitoring mode, and the set frequency can be also modified by means of parameter modification.

### 7.4 CONTROL COMMAND SOURCE (GROUP F0.3)

| F0.3.33 | Control command 1 | Setting range: 0~3 |
| :--- | :--- | :--- | Factory default: 0

To select the input physical channel of the inverter control commands (start, stop, forward, reverse, jog and reset, etc).

## 0: Operating panel

The running control command is given via the operating panel. Please see Chapter 5 for the use of the operating panel.

## 1: External control terminal

The running control command is given via external control commands, and the terminal function is set by the parameter F3.0.

## 2: MODBUS fieldbus/standard expansion card configuration

The running control command is given via MODBUS fieldbus.

## 3: Expansion communication module

The operation command is specified through the expansion communication mode.

F0.3.35 External control terminal   action mode(H)	Setting range: 0000~0013	Factory default: 0000

## The unit: Control command action mode

Preconditions for below instructions: the multifunctional terminal DI3 is for FWD command function ([F3.0.02]=7), DI4 is for REV function ([F3.0.03]=8), and DI5 is for three-line running control function ([F3.0.04]=19).

## 0 : Two-line mode 1

DI4	DI3	Running   command
OFF	OFF	Stop
OFF	ON	FWD
ON	OFF	REV
ON	ON	Stop



Fiqure 7-12-A Two-Line running mode 1

## 1: Two-line mode 2

DI4	DI3	Running   command
OFF	OFF	Stop
OFF	ON	FWD
ON	OFF	Stop
ON	ON	REV



Figure 7-12-B Two-line running mode 2

## 2: Three-line mode 1

When K0 is engaged, FWD and REV control is effective; and when $\mathbf{K 0}$ is unengaged, FWD and REV control is void, and the inverter will stop.

DI3 terminal ascending edge indicates FWD running command and DI4 terminal ascending edge indicates REV running command, as shown in Figure 7-13-A.


Figure 7-13-A Three-line running mode 1


Figure 7-13-B Three-line running mode 2

## 3: Three-line mode 2

When K0 is engaged, FWD and REV control is effective; and when K0 is unengaged, FWD and REV control is void, and the inverter will stop.

DI3 terminal ascending edge indicates running command; DI4 terminal disconnection indicates FWD running command, and DI4 terminal engagement indicates REV running command, as shown in Figure 7-13-B.

## Tens: Control command power-on initial start mode

0: Running signal level starting
1: Running signal rising edge starting

Note: The signal given by two-line mode running command is level signal, and when the terminal is at effective status, the inverter will automatically start after power-on. And in the system in which power-on auto start is not expected, it is applicable to select the way of rising edge start.

### 7.5 START AND STOP (GROUP F0.4)

F0.4.37 Start/Running permission(H)
Setting range: 0000~1303
Factory default: 0000
The unit: Start permission

## 0 : Function closed

The inverter can start without start permission signal.

## 1: Permitted when the multifunctional terminal is effective

The inverter will not start until it is defined that the multifunctional input terminal (Group F3.0) of the start permission (Function No. 42) is continuously effective; start is forbidden when it is void, and the inverter which is running will stop freely (alarm code: aL.031). The inverter will not start again until the rising edge of the starting signal is detected.

## 2: Command word from standard fieldbus (effective when standard expansion card is equipped)

The start permission signal is from the bus command word.
3: Command word from expansion communication module

The start permission signal is from the expansion communication module command word.

## Hundreds: Running permission

## 0 : Function closed

The inverter can run without running permission signal.

## 1: Permitted when the multifunctional terminal is effective (Function No. 43)

The inverter will not start until the multifunctional input terminal (Group F3.0) which is defined to be running permissible (Function No. 43) is effective; if it is void, the inverter will stop in the way defined by the kilometer of this parameter, and will then automatically run again after signal recovery.

2: Command word from standard fieldbus (effective when standard expansion card is equipped)
The start permission signal is from the bus command word.

## 3: Command word from expansion communication module

The start permission signal is from the expansion communication module command word.
Kilobit: The action mode when the running permission signal is void

## 0: Free stop

The inverter stops outputting, and the motor stops freely.

## 1: Deceleration stop

The inverter will stop at deceleration mode according to preset deceleration time.


Figure 7-14 Schematic diagram of start process

| F0.4.38 Start/Stop Mode (H) | Setting range: 0000~0101 | Factory default: 0000 |
| :--- | :--- | :--- | :--- |

The unit: Start mode

## 0: Normal start

There are no special requirements for most load start mode. Normal start mode will be adopted.

## 1: Revolution tracking start

It is applicable to the occasion of fault resetting and restart and restart after power-off. The inverter will automatically judge the running speed and direction of the motor, and starts the rotating motor in a smooth and impact-free way according to the detection and judge results; see below figure for the revolution tracking start sketch.


Figure 7-15 Revolution tracking start sketch

## Hundreds: Stop mode

## 0: Deceleration stop

In the case of deceleration stop, the inverter will gradually reduce the output frequency according to the preset deceleration time until it stops.

## 1: Free stop

At stop, the inverter outputs zero frequency and clocks output signals, and the motor will stop in a free sliding way according to inertia.

At free stop, if it is needed to restart the motor before the motor stops running completely, it is necessary to appropriately configure the revolution tracking start function; otherwise, it will leads to overcurrent or overvoltage fault protection.

If the motor has not stopped completely in deceleration way, because of high load inertia of the field work and short deceleration time, it is then applicable to start DC band-type braking control. See the instructions of the parameter F0.4.44 for details.

F0.4.39 Start frequency	Setting range: $0.0 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}$	Factory default: 0.50
F0.4.40 Start frequency   holding time	Setting range: $\mathbf{0 . 0 0 \sim 1 0 . 0 0 S e c .}$	Factory default: 0.0

The start frequency means the initial frequency when the inverter starts up, and is not limited by the lower limiting frequency F0.1.22.

The start frequency holding time means the duration of operation at the start frequency, and can be set according to actual needs. When it is set to $\mathbf{0}$, the start frequency is void.

For the system with high inertia, heavy load and high requirement of start torque, the start frequency can effectively overcome the difficult of start, and the start frequency is also effective in each acceleration process when the inverter switches between forward and reverse running.


Figure 7-16 Start frequency sketch

F0.4.41	Start pre-excitation current	Setting range: $\mathbf{0 . 0} \sim \mathbf{1 0 0 \%}$	Factory default: $\mathbf{3 5 . 0}$
F0.4.42	Start pre-excitation time	Setting range: $\mathbf{0 . 0 0 \sim 1 0 . 0 0 S e c .}$	Factory default: $\mathbf{0 . 1 0}$

It costs some time to develop air gap flux for asynchronous motor (approaching to the constant of the rotor time). When it is at stop status before the motor is started, in order to get enough start torque, it is a must to develop the air gap flux. Therefore, it is needed to start pre-excitation for the asynchronous motor. See Figure 7-18 for the pre-excitation process.

The set value of start pre-excitation current is the percentage with respect to the inverter rated output current.

The start pre-excitation time means the duration in which the inverter inputs start pre-excitation current for the motor.
> When the rated current of the adapter motor differs greatly from the rated current of the inverter, please carefully set the pre-excitation current (F0.4.41), as excessive setting may damage the motor.


Figure 7-17 Start pre-excitation output

F0.4.43 Start delay	Setting range: $\mathbf{0 . 0 0 \sim 1 0 0 . 0 0 S e c .}$	Factory default: $\mathbf{0 . 0}$

Start delay means the waiting time before the inverter starts after receiving the running command.

F0.4.44 DC band-type   brake control	Setting range: 0000~0001	Factory default: 0

The unit: DC band-type brake control
The DC band-type brake means to lead DC current into the motor rotor so as to generate braking torque. The DC band-type braking function cannot be used when synchronous motor is driven.

When both the set value and the actual speed of the motor has decreased below [F0.4.45], the inverter will stop generating sine current but will inject direct current to the motor, and the current value is to be set by the parameter [F0.4.47]. When the given speed or the motor speed has surpassed the parameter [F0.4.45], the inverter will stop DC power supply and restore to the normal running status.If it is started, the permission signal will be disconnected, and the DC band-type brake will be void.

The DC band-type braking function does not work when matching the permanent synchronous motor.


Figure 7-18 DC band-type brake sketch

Injecting current to the moor may lead over-temperature of the motor. In the circumstances where long-time DC band-type brake is needed, forced air-cooling motor should be used. During the long time of band-type braking, if there is constant load in the motor band-type brake, DC band-type brake will not guarantee that the motor shaft will not rotate.

F0.4.45 DC band type brake / brake   initial frequency/speed	Setting range:   $\mathbf{0 . 0 H z \sim [ F 0 . 1 . 2 1 ] ~}$	Factory default: 2.00

In the deceleration and stop process of the inverter, when the output frequency is lower than the DC band-type brake/brake start frequency/speed, the DC band-type brake/brake function will be started.

F0.4.46 DC brake action time	Setting range:   $0.00 \sim 10.00 \mathrm{Sec}$.	Factory default: 0.0
F0.4.47 DC band-type brake / brake   injection current	Setting range:   $0.0 \sim 100 \%$	Factory default: 50.0

The $D C$ brake time is the duration of the output $D C$ braking current. If it is selected that the external terminal stop DC braking is effective, the parameter of DC braking action time will be void.

The DC band-tape brake/brake injection current means the brake current outputted at the time of inverter DC band-type brake/brake. Its set value is the percentage with respect to the rated current. The DC band-type braking function does not work when matching the permanent synchronous motor.


Figure 7-19 Stop DC brake sketch

F0.4.48	Restart after power-off	Setting range: 0,1	Factory default: 0

It is mainly for the trigger starting modes including "panel control, bus control and three-line control". If the function of restart after power-off is set to be effective, when the inverter is powered off, the running command/status before power-off will be automatically saved, and it will automatically restore to the running status before power-off after the waiting time after power-on again.

In case of the restart after power-off, it will resume running in the mode of restart at detected speed.

F0.4.49 Standby time for restart   after power-off/free stop	Setting range: 0.1~10.0Sec.	Factory default: 0.5

It means the time of waiting status before the inverter automatically executes the function of restart after power-off.

F0.4.50 Forward and reverse   transition dead time	Setting range: $0.00 \sim 5.00 \mathrm{Sec}$.	Factory default: 0.0

The forward and reverse transition dead time is used to set the waiting time for the motor to shift from FWD to REV or from REV to FWD. This function is used to overcome reversal current compact caused by mechanical dead zone, as shown in Figure 7-21.


Figure 7-20 FWD and REV transition dead zone sketch

## F0.4.51 Forward and reverse switch mode $\quad$ Setting range: 0, $1 \quad$ Factory default: 0

## 0: Switch at zero point

To switch between FWD and REV at the zero point.

## 1: Start frequency switch

To switch between the FWD and REV at the start frequency. See the following figure:


Figure 7-21 Sketch of start frequency FWD and REV switching

F0.4.52 Zero speed (frequency)   detection level	Setting range: $0.00 \sim 100.00 \mathrm{~Hz}$	Factory default: 0.10 Hz
F0.4.53 Zero speed delay time	Setting range: $0.00 \sim 10.00$ Sec.	Factory default: 0.05

When the inverter output frequency is lowered to zero, it will immediately lock the output. At this time, the
motor revolution may not at zero, but the motor is completely at the free stop status, and will slide to stop.
Within the delay time, when the inverter output frequency is lower than the zero speed (frequency) detected level [F0.4.52], within the zero speed delay time [F0.4.53], the inverter will keep working and output a DC current, and the motor will keep excitation. The inverter may rapidly restart at any time.


Figure 7-22 Comparison diagram when with or without zero speed delay
F0.4.54 Emergency stop mode (EMS) $\quad$ Setting range: 0, $1 \quad$ Factory default: 0

This parameter defines the stop mode after the inverter has received an emergency command (Function No. 14, to be set by the Group F3.0 parameters).

### 7.6 ACCELERATION AND DECELERATION CHARACTERISTICS (GROUP F1.0)

F1.0.00 Acceleration and decelera   -tion characteristics parameters	Setting range: 0000~0011	Factory default: 0000

## The unit: Acceleration and deceleration mode

## 0 : Liner acceleration and deceleration

The output frequency of the inverter increases or decreases according to fixed speed. The output frequency has liner relationship with the acceleration and deceleration time, and steadily increases or decreases according to constant gradient.

## 1: S curve acceleration and deceleration

The output frequency of the inverter increases or decreases according to grading speed, and the characteristics of $\mathbf{S}$ curve is determined by the parameter [F1.0.01] and [F1.0.02]. This function is mainly to reduce noise and ventilation during acceleration and deceleration, and decrease impact of the starting and stop load. When the load inertia is excessive, leading to overload fault during deceleration, it can be improved by adjusting the parameter setting ([F1.0.01] and [F1.0.02]) of $\mathbf{S}$ deceleration curve, so as to reasonably adjust the deceleration rate at different frequency.


Figure 7-23 Acceleration and deceleration curve

## Tens: Unit of acceleration and deceleration time

## 0: Sec. (Second)

The acceleration and deceleration time is in the unit of second, and is at factory default value.

## 1: Min. (Minute)

The acceleration and deceleration time is in the unit of minute.

F1.0.01 Time ratio of S curve   acceleration starting/deceleration   ending period	Setting range:   $5.0 \sim 100.0-[F 1.0 .02]$	Factory default: 15.0
F1.0.02 Time ratio of S curve   acceleration rising/deceleration   decreasing period	Setting range:   $20.0 \sim 100.0-[F 1.0 .01]$	Factory default: 70.0

Define the curve parameters of acceleration and deceleration of $\mathbf{S}$ curve.
As shown in item
(1). In Figure 7-24, the acceleration starting/deceleration ending period of $\mathbf{S}$ curve is indicated by the percentage of the total acceleration and decoration time.

As shown in item
(2). In Figure 7-24, the acceleration rising/deceleration decreasing period of $\mathbf{S}$ curve is indicated by the percentage of the total acceleration and decoration time.

F1.0.03~F1.0.08 Acceleration/deceleration time 1/2/3	Setting range: 0.01~600.00	Factory default $\hat{\text { i }}$
F1.0.09 Acceleration 4/jog acceleration time	Setting range: 0.01~600.00	Factory default $\hat{\nu}$
F1.0.10 Deceleration 4/jog deceleration time	Setting range: 0.01~600.00	Factory default: $\hat{\sim}$

The acceleration time means the time required for the inverter to accelerate from $\mathbf{0 . 0 0 \mathrm { Hz }}$ to maximum output frequency [F0.1.20].

The deceleration time means the time required for the inverter to decelerate from the maximum output frequency [F0.1.20] to 0.00 Hz .

A510 series inverters are defined with 4 kinds of acceleration/deceleration time. The acceleration/ deceleration time 1~4 during the running process of the inverter can be selected through different combinations of external terminals. During simple PLC running, it is also applicable to use them as the acceleration and deceleration time at the time of switching among different running frequency at each stage. See instructions of $\mathbf{F 6 . 1}$ group parameters for detail.

The acceleration/deceleration time 4/jog acceleration/deceleration time are also used as the acceleration and declaration running time at the status of jog running. The jog frequency has the highest priority. At any state, the inverter will immediately transit to the jog frequency running state according to the preset jog acceleration and deceleration time as long as the jog command is inputted. (See the instructions of the functional parameter F0.1.23 and F0.1.24) the unit (Sec., min.) of the acceleration and deceleration time is determined by the tens' digit of the parameter F1.0.11.


Figure 7-24 External terminal selection mode for acceleration and deceleration time

F1.0.11 EMS emergency stop   and deceleration time	Setting range: 0.01~600.00	Factory default: $\mathfrak{\xi}$

The time for decelerating from the maximum output frequency [ $\mathbf{F 0 . 1 . 2 0}$ ] to the zero frequency will only function when the inverter stops in deceleration way ( $\mathbf{F 0 . 4 . 5 4}$ is set to $\mathbf{0}$ ) after receiving EMS emergency stop command (Function No. 14).

### 7.7 CARRIER FREQUENCY (GROUP F1.1)

F1.1.13 Carrier frequency	Setting range: $1.5 \sim 15.0 \mathrm{KHz}$	Factory default: $\hat{\sim}$

It is the switch frequency determining the inverter's internal power module. The allowable maximum carrier frequency is relevant with the inverter model. The carrier frequency mainly influences the audio noise and heat effect during running. When mute running is required, it is applicable to appropriately increase the value of the carrier frequency, but the maximum load allowable for the inverter may be somewhat reduced, accompanied by somewhat increase of interference of the inverter to the outside world. For the circumstances where the motor wire is too long, it may lead to leaking current between motor wires and between the wire and the ground. When the ambient temperature is too high and the motor load is too high, or the inverter is failed due to above reasons, it is suggested to appropriately decrease the carrier frequency to improve thermal characteristics of the inverter.

F1.1.14 Carrier characteristics	Setting range: 0000~2111	Factory default: $\mathbf{0 1 1 1}$

This parameter is used to set some characteristics relevant with the carrier (binary system setting), and usually needs not be modified.

## The unit: Load linkage adjustment

When this function is effective, if the load current is excessive, the carrier frequency will be automatically decreased in order to ensure safe running of the inverter.

## Tens: Temperature linkage adjustment

When this function is effective, the inverter will automatically decrease the carrier frequency if the ambient temperature is too high.

## Hundreds: Reference frequency linkage adjustment

The inverter will appropriately decrease the carrier frequency if the output frequency is too low.

## Kilobit: Modulation mode

$\mathbf{0}$ : Asynchronous modulation - It is application to most applicaitons with the outout below 300 Hz .
1: Synchronous modulation -The carrier frquency and base frequency keep constant ratio.
2~5: Noise smoothing - When this function is effective, the inverter will automatically adjust carrier frequency to smooth audio noise.

### 7.8 V/F PARAMETERS AND OVERLOAD PROTECTION (MOTOR 1) (GROUP F1.2)

F1.2.15 Reference frequency   of motor 1	Setting range: $5.00 \sim 300.00 \mathrm{~Hz}$	Factory default: 50.00
F1.2.16 Reference voltage of   motor 1	Setting range: $50 \sim 500 \mathrm{~V}$	Factory default: 380/220

The reference frequency means the minimum frequency when the inverter outputs the maximum voltage, and generally is rated frequency of the motor.

The reference voltage means the output voltage when the inverter outputs the reference frequency, and generally is rated voltage of the motor.

This group of parameters is set according to the motor's parameters, and do not need to be modified except for special circumstances.

## F1.2.17 V/F curve selection for motor $1 \quad$ Setting range: 0, 1, 2, 3 $\quad$ Factory default: 0

Set the corresponding curve between the inverter output voltage and output frequency. See the following figure.

## 0 : Customized curve

When this mode is selected, users can set any desired V/F curve via this group of parameters (Group F1.2).

## 1: 1.2 times squares curve

The outputted is 1.2 times-square descending torque characteristics curve. See the curve 1 in the Figure 7-25.

It is suitable for torque load of fans and pumps.

## 2: 1.5 times squares curve

The outputted is $\mathbf{1 . 5}$ times-square descending torque characteristics curve. See the curve $\mathbf{2}$ in the Figure $7-25$. It is suitable for torque load of fans and pumps. The energy saving effect of the descending torque curve is slightly increased compared with the constant torque curve.

## 3: Second square curve

The outputted is $\mathbf{2 . 0}$ times-square descending torque characteristics curve. See the curve $\mathbf{3}$ in the Figure $7-25$. It is suitable for torque load of fans and pumps. If it is not steady during light load operation, please switch to 1.5 times-square curve for operation.

[F1.2.16] Output frequency
Figure 7-25 V/F curve

F1.2.18 Torque increasing   voltage for motor 1	Setting range: $\mathbf{0 . 0} \sim \mathbf{2 0 . 0 \%}$	Factory default: $\mathfrak{\Re}$

It is used to improve the inverter's low frequency torque characteristics. When the inverter runs at low frequency, it will make compensation for the inverter's output voltage. Its set value is the percentage relative to the motor's reference voltage [F1.2.16]. See figure $7-27-A$ and $7-27-B$.


Figure 7-26-A Sketch of torque booster for descending torque curve


Figure 7-26-B Sketch of torque booster for constant torque curve

F1.2.19 Frequency point 1 of   motor 1 V/F curve	Setting range: $0.0 \sim[F 0.1 .21]$	Factory default: 0.0
F1.2.20 Voltage point 1 of Motor 1   V/F curve	Setting range: $0 \sim 500 \mathrm{~V}$	Factory default: 0.0
F1.2.21 Frequency point 2 of   motor 1 V/F curve	Setting range: $0.0 \sim[F 0.1 .21]$	Factory default: 0.0
F1.2.22 Voltage point 2 of Motor 1   V/F curve	Setting range: $0 \sim 500 \mathrm{~V}$	Factory default: 0.0
F1.2.23 Frequency point 3 of   motor 1 V/F curve	Setting range: $0.0 \sim[F 0.1 .21]$	Factory default: 0.0
F1.2.24 Voltage point 3 of Motor 1   V/F curve	Setting range: $0 \sim 500 \mathrm{~V}$	Factory default: 0.0

This group of parameters is used to flexibly set V/F curve desired by users, as shown in Figure 7-27.


Figure 7-27 V/F customized curve

F1.2.25 Slip frequency   compensation for motor 1	Setting range: 0~150\%	Factory default: 0

The actual revolution difference of the motor may vary with the change of the load. Through setting of this parameters, the inverter will automatically adjust the inverter's output frequency according to the load, so as to offset the influence of the load to the motor revolution.

This parameter is only effective to V/F control mode.


Figure 7-28 Slip frequency compensation sketch

### 7.9 STEADY RUNNING (GROUP F1.4)

## F1.4.39 Acceleration/deceleration

 current limiting levelWhen the frequency inverter is in acceleration and deceleration running, for the acceleration and deceleration time does not match to the motor inertia or load breaks, there can be phenomenon of steep current rise. This parameter is used for setting the allowed output level when frequency inverter is in state of acceleration. Setting value is the relevant percentage of rated output current of frequency inverter.

When the output current of frequency inverter exceeds the specified level of this parameter, acceleration and deceleration time will be automatically delayed, to ensure the output current limited within the range of this level, refer to the figure below. Thus, for occasions requiring shorter acceleration time, acceleration torque level shall be properly improved.


Figure 7-29 Schematic diagram of current limit for acceleration and deceleration

F1.4.40 Strong start current   limiting level	Setting range: $120 \sim 220 \%$	Factory default: 170
F1.4.41 Strong start current   holding time	Setting range: $\mathbf{0 . 0 0 \sim 5 . 0 0 S e c .}$	Factory default: $\mathbf{0 . 0}$

Function is similar with [F1.4.39], limit the current value when frequency inverter is in acceleration and starting. For some systems with large inertia, or requires to overcome great static friction at start, large starting current can be set for a certain time ([F1.4.41]), to meet the requirement. Setting value is the relevant percentage of rated output current of frequency inverter.

$>\quad$ When F1.4.41 is set as zero, it means the function of current limit of strong start is closed.

F1.4.42 Function selection for   adjustors	Setting range: 0000~0111	Factory default: 0111

The unit: Overvoltage suppression adjustor
When setting is valid, for load with energy feedback, in order to suppress overvoltage, frequency inverter may lift output frequency automatically, making it exceed selected frequency (limited by upper limiting frequency). Be attention if it is dangerous to the equipment safety when setting.

## Tens: Undervoltage suppression adjustor

When setting is valid, undervoltage caused by sudden fall of grid voltage, frequency inverter may lower output frequency automatically, accessing into feedback braking state, to keep running with mechanical energy for a certain time to ensure the normal running of equipment.

## Hundreds: Frequency modulation and current

When setting is valid, if the output current exceeds the maximum current [F1.4.47], frequency inverter will lower output frequency automatically.

F1.4.43 Action level of the   over voltage adjustor	Setting range: $660 \sim 800 \mathrm{~V}$	Factory default: 750
F1.4.44 Over voltage   adjusting gain	Setting range: $\mathbf{0 . 1 0 \sim 1 0 . 0 0}$	Factory default: 1.00

When the motor is dragging over voltage or in process of deceleration stop with large inertia, it may access into recycle braking state, causing rapid rise of direct current bus voltage of frequency inverter, leading to over voltage protection action. When frequency inverter detects the direct current bus voltage exceeds [F1.4.43], it will adjust output frequency (extended deceleration time or increase frequency), to ensure continually safe running.


Figure 7-30-A Over voltage suppression during steady running


Figure 7-30-B Over voltage suppression during deceleration process

The larger the overvoltage adjusting gain is, the more obvious the suppression is, but it may lead to unsteady running.

F1.4.45 Action level of the   under voltage adjustor	Setting range:[FF.2.35]~480V	Factory default: 400
F1.4.46 Under voltage   adjusting gain	Setting range: $0.10 \sim 10.00$	Factory default: 1.00

When frequency inverter detects the direct current bus voltage is below [F1.4.45], it may lower output frequency automatically, accessing into recycle braking state, keep running with mechanical energy. The larger the under voltage adjusting gain is, the stronger under voltage suppression is.

This function plays very efficiently in large inertia load application occasions like centrifugal pump and draught fan.


Figure 7-31-A Sketch of under voltage adjusting


Figure 7-31B Sketch of current-limiting adjusting and under voltage adjusting

F1.4.47 Action level of current   limiting adjustor	Setting range: 20~220\%	Factory default: 200
F1.4.48 Adjusting gain of the   current limiting adjustor	Setting range: 0.10~10.00	Factory default: 1.00

When the output current of frequency inverter exceeds [F1.4.47], it may lower output frequency automatically to suppress current from further increasing, to ensure continually safe running. The bigger [F1.4.48] gain is, the stronger current suppression is. Setting value is relevant percentage of rated output current of frequency inverter.

F1.4.49 Recovery times of fault   self resetting	Setting range: $0 \sim 5$	Factory default: 0
F1.4.50 The recovery waiting   time of fault self resetting	Setting range: $0.2 \sim 5.0$ Sec	Factory default: 1.0
F1.4.51 Time period for self   resetting timing	Setting range: $900 \sim 36000$ Sec.	Factory default: $\mathbf{3 6 0 0}$

Fault self resetting refers to that when the frequency inverter breaks down, with a period of time, fault self resetting can be operated and recover to run with starting way of speed inspection. When accumulated resetting times exceeds setting value [F1.4.49], self resetting action terminates. When self resetting time [F1.4.49] is set as zero, it means this function is banned.

Recovery waiting time of fault self resetting gets longer with resetting times: Waiting time=[F1.4.50] * Already reset times.

Each time it passes the set parameter period [F1.4.51], or external forced fault reset, it will automatically eliminate one self resetting record.

F1.4.53 Display coefficient	Setting range: 0.001~60.000	Factory default: 1.000

It is used for correction values of monitoring parameters (d0.0.00, d0.0.01, d0.0.09, d0.0.10), to match with site parameters.

### 7.10 VECTOR PARAMETERS (GROUP F2.0)

F2.0.00~F2.0.04	Rated parameters of asynchronous motor 1	-	Factory default: $\mathfrak{\hbar}$
F2.1.26~F2.1.30	Rated parameters of asynchronous motor 2	-	Factory default: $\mathfrak{\hbar}$

Nameplate parameters of asynchronous motor, for ensure performance control, it must:

- Correctly set nameplate parameters;
- Power level of motor and frequency inverter shall be match with each other, generally motor only can be two levels less or one level more than frequency inverter.

Change the rated power setting (F2.0.00), it may match with later parameters automatically. Please change the settings in order.

Any one of the nameplate parameters changed, frequency inverter can set static identification of motor parameters once automatically. With motor accessed to start running, an additional static identification of parameters will be conducted prior to running (parameter FF.4.43 can shield this function).

F2.0.05 ~ F2.0.09   motor 1	Internal parameters of asynchronous	-
F2.1.31 ~ F2.1.35   motor 2	Internal parameters of asynchronous	-

This group of parameters can be auto updated after parameter identification, generally free of necessity of setting.

F2.0.10 Motor 1 slip compensation   coefficient	Setting range: 0.50~1.50	Factory default: 1.00
F2.1.36 Motor 2 slip compensation   coefficient	Setting range: 0.50~1.50	Factory default: 1.00

Slip compensation coefficient is used for slip frequency calculation, valid with vector control mode. With SVC running, this parameter can be amended to adjust speed for compensation control.

F2.0.11~F2.0.15	Rated parameters of synchronous motor 1	-	Factory Default: $\hat{\sim}$
F2.1.37~F2.1.41	Rated parameters of synchronous motor 2	-	Factory Default: $\hat{\chi}$

Rated parameters of synchronous motors must be correctly entered before operation according to actual statusof the connected motor.

The maximum voltage parameters F2.0.12 and F2.2.38 are the maximum output voltage of the synchronous motors. When the revolution is beyond the critical point corresponding to this voltage, the permanent magnet synchronous motor will be automatically injected into weak magnetic current, hence changing into weak magnet control.

F2.0.17 EMF constant of   synchronous motor 1	Setting range: $0.010 \sim 5.000 \mathrm{~V} / \mathrm{rpm}$	Factory Default: 0.215
F2.1.43 EMF constant of   synchronous motor 2	Setting range: $0.010 \sim 5.000 \mathrm{~V} / \mathrm{rpm}$	Factory Default: 0.215

This parameter is also one of rated parameters of the synchronous motors, equaling to "rated voltage/rated revolution" of the permanent magnet motor.

In order to secure better dynamic performance, please correctly input this parameter.

F2.0.16	Pole pairs of synchronous motor 1	1~32	Factory Default: 2
F2.1.42	Pole pairs of synchronous motor 2	1~32	Factory Default: 2

It is one of rated parameters of the synchronous motors, and is corresponding to the rated revolution parameter. It is only needed to set one of the two parameters, and the equipment will automatically figure out the values of the other group of parameters.

F2.0.20~F2.0.23	Internal parameters of synchronous motor 1	-	Factory Default: $\sim^{3}$
F2.1.46~F2.1.49	Internal parameters of synchronous motor 2	-	Factory Default: $\boldsymbol{\sim}$

Internal parameters of synchronous motors, will update automatically after running of the self-identification, and do not need to be set.

F2.0.24	Motor 1 Z pulse initial angle	Setting range: $0.0 \sim 359.9$	Factory default: $\mathbf{0 . 0}$
F2.1.50	Motor $\mathbf{2} \mathrm{Z}$ pulse initial angle	Setting range: $\mathbf{0 . 0 \sim 3 5 9 . 9}$	Factory default: $\mathbf{0 . 0}$

This parameter is valid when $\mathbf{Z}$ pulse selection is valid ([F8.0.07] = $\mathbf{1}$ ), used for set corresponding mechanical rotating angle of $\mathbf{Z}$ pulse position. It is continuously effective when it is selected to drive the permanent magnet motor, and is automatically set after running of parameter self-identification.

F2.0.25 Motor 1 overload   protection coefficient	Setting range: 50.0~131.0\%	Factory default: 115.0
F2.0.51 Motor 2 overload   protection coefficient	Setting range: 50.0~131.0\%	Factory default: 115.0

This parameter is used for setting sensitivity of heat relay protection to load motor of frequency inverter. When the rated current of the load motor does not match with the rated current of the inverter, correct thermal protection can be secured by setting this value.

The set value of this parameter can be confirmed through below formula:
[F2.0.25]=Motor rated current /Inverter rated current*100\%
When fixed value of this parameter is $\mathbf{1 3 1 . 0 \%}$, overload protection function of motor closes.
$>\quad$ When a frequency inverter runs with several motors in parallel, function of heat relay protection of frequency inverter will out of action automatically. In order to protect motor efficiently, it is suggested that installation of heat protection relay in each motor.

### 7.11 MOTOR PARAMETER TUNING (GROUP F2.2)

## F2.2.52 Start pre-excitation

 time in vector modeSetting range: 0.02~2.50Sec.
Factory default: $\mathbf{0 . 5 0}$

This parameter is valid with vector operation; the pre-excitation action must be conducted prior to start of motor, to build air gap flux to obtain enough starting torque. This excitation process shall be conducted after action defined of parameter F0.4.42, excitation current shall be calculated automatically as selected time. The shorter the excitation time is, the larger the current is.

## F2.2.53 Motor parameter measurement $\quad$ Setting range: 0, 1, $2 \quad$ Factory default: 0

Motor parameter measurement function must be started when vector control mode is selected (Tens of F0.0.09 is set as 0 or 1).

When this function (when F2.2.53 is set as $\mathbf{1}$ or $\mathbf{2}$ ) is operated, there will be a identification operation when the frequency inverter is start. After parameter identification is over, F2.2.53 will automatically reset.
Obtained motor parameters will be stored in internal storage of frequency inverter, and value of parameter F2.0.05 ~ F2.0.09 will be automatically updated.

Before identification operation, please confirm that:

1. Nameplate parameter of motor (F2.0.01~F2.0.04) has been input correctly;
2. The motor is in stopped condition.

0 : Closed

## 1: Static identification

During the process of parameter tuning of the asynchronous motor, the motor shall be always kept in stopped condition.

During tuning of parameters of the permanent magnet synchronous motor, the motor shaft will slowly rotate at low speed. Please ensure the motor shaft is free of load and damping.

## 2: Static + operating parameter identification + revolution ratio identification (void when the synchronous motor is operating)

Frequency inverter will conduct static identification previously, and then automatically start operation identification process. During operation identification process, stop order can be input to forcedly terminate identification process. It won't be eliminated of application of identification then. When restarted, identification process will be operated again.

Top operating frequency of operation identification will reach $\mathbf{8 0 \%}$ of rated frequency of motor. Before identification starts, please be sure to confirm the equipment safety, and it will automatically stop operating when identification ends.
> During the process of operation identification of motor parameter, it must sure that no load of motor during the whole process, otherwise, incorrect motor parameters will be obtained.

### 7.12 MULTIFUNCTIONAL INPUT TERMINAL (GROUP F3.0)

F3.0.00~F3.0.04 Multifunctional input   terminals DI1~DI5	Setting range: 0~96	
F3.0.05 Multifunctional input terminal DI6 /   standard expansion card	Setting range: 0~96	Factory default: 0
F3.0.06 Multifunctional input terminal DI7 /   standard expansion card	Setting range: 0~96	Factory default: 0
F3.0.07 Multifunctional input terminal DI8 /   standard expansion card	Setting range: 0~96	Factory default: 0
F3.0.08 Multifunctional input terminal DI9   /Fin (0~98) / standard expansion card	Setting range: 0~98	Factory default: 97

Control terminals DI1~DI9/Fin are functional programmable switch input terminals; they can define the DI1~DI9/Fin functions respectively by way of the setup of F3.0.00~F3.0.08 values; see their set values and relevant functions as Table 1 (Contrast Table of Multifunctional Terminals (DI/EDI/SDI) Function).

For example: Define F3.0.00 as $\mathbf{2 3}$, so the function of DI1 can be defined as "Simple PLC Multi-stage Operation Input"; when the DI1 terminal status validates, simple PLC multi-stage operation input function can be realized.

The function specifications in the table as following:

## 1~4: Multi-speed control terminals 1~4

By means of the ON/OFF status combinations of these four functional terminals, select the set frequencies relevant to $\mathbf{F 6 . 0 . 0 0}$ ~ 6.0 .15 parameters as the current set frequencies of frequency converter. The priority of the frequency instruction is higher than frequency set channel F0.1.16.

Table 7-3 Multi-speed operation selection table

Multi-speed   control 4	Multi-speed   control 3	Multi-speed   control 2	Multi-speed   control 1	Frequency set
OFF	OFF	OFF	OFF	Ordinary operation frequency   (F0.1.16 determined)
OFF	OFF	OFF	ON	Multi-stage operation frequency 1
OFF	OFF	ON	OFF	Multi-stage operation frequency 2
OFF	OFF	ON	ON	Multi-stage operation frequency 3
OFF	ON	OFF	OFF	Multi-stage operation frequency 4
OFF	ON	OFF	ON	Multi-stage operation frequency 5
OFF	ON	ON	OFF	Multi-stage operation frequency 6
OFF	ON	ON	ON	Multi-stage operation frequency 7
ON	OFF	OFF	OFF	Multi-stage operation frequency 8
ON	OFF	OFF	ON	Multi-stage operation frequency 9
ON	OFF	ON	OFF	Multi-stage operation frequency 10
ON	OFF	ON	ON	Multi-stage operation frequency 11
ON	ON	OFF	OFF	Multi-stage operation frequency 12
ON	ON	OFF	ON	Multi-stage operation frequency 13
ON	ON	ON	OFF	Multi-stage operation frequency 14
ON	ON	ON	ON	Multi-stage operation frequency 15

## 5~6: External forward/Reverse jog control

Apply to jog operation control under the external terminal control (regard F0.3.33/F0.3.34 as 1).

## 7~8: Forward (FWD)/Reverse (REV) running command terminal

Apply to forward (FWD)/reverse (REV) running command under the external terminal control (regard F0.3.33/F0.3.34 as 1); according to the setup of F0.3.35, it can jog two-line mode and three-line mode (regard another external control terminal as three-line running command function (Function No. 19)).

## 9~10: Acceleration and deceleration time 1 and 2

By means of the acceleration and deceleration time, selecting the ON/OFF status combinations of terminals can realize the selection of acceleration and deceleration time 1~4 (refer to parameter specifications of $\mathbf{F 1 . 0 . 0 3 \sim F 1 . 0 . 1 0}$ ). If the user doesn't define this function, frequency inverter can automatically select acceleration and deceleration 1, except simple PLC jog. See the acceleration and deceleration time selection as following table.

Table 7-4 Contrast table of acceleration and deceleration time selection

Acceleration and deceleration   time selection2	Acceleration and deceleration   time selection1	Acceleration and deceleration   time
OFF	OFF	Acceleration time 1   /Deceleration time 1
OFF	ON	Acceleration time 2   /Deceleration time 2
ON	OFF	Acceleration time 3   /Deceleration time 3
ON	ON	Acceleration time 4   /Deceleration time 4

## 11: Running command switching

This function is applied to switch running command of frequency inverter between control command 1 and control command 2. See the running command switching status as following table:
Table 7-5 Contrast table of jog command switching

Terminal status	Running command of frequency inverter
ON	Running command 2
OFF	Running command 1

## 12: Frequency command switching

This function is applied to switch frequency setting source of frequency inverter between frequency setting source 1 and frequency setting source 2. See the frequency command switching status as following table:

Table 7-6 Contrast table of frequency command switching

Terminal status	Frequency setting source of frequency inverter
ON	Frequency setting source 2
OFF	Frequency setting source 1

## 13: Fault resetting input (RESET)

Once frequency inverter occurs to fault alarm, reset it through external terminals and be valid to input rising edge; The function is coincident to operation board's STOP/RESET buttons'.

## 14: Emergency stop (EMS)

Whatever status frequency inverter operates, if the functional terminal is effective, frequency inverter stops in terms of set emergency stop mode (F0.4.54) and starts to operate with rising edge of running command.

## 15~16: Frequency or Process PID set value ascending (UP)/descending (DW)

A510 frequency inverter can achieve the setup of operation frequency via external terminal and long-distance frequency set operation. If the terminal is effective, set frequency increases progressively or decreases progressively in the light of set speed; If the terminal is ineffective, set frequency keeps same. If both terminals are effective, set frequencies keep same. See 4~8 parameter functional specifications of F0.2.25 or F0.2.26.

## 17: UP/DW set frequency zero clearing

Set frequency of external terminal can be cleared to zero through the functional terminal (set frequencies of frequency increasing progressively command UP/decreasing progressively command DW). The function invalidates frequencies set by other frequencies setting modes.

## 18: External equipment fault

Inputting external equipment fault signal through the terminal is easy for frequency inverter to fault supervision and communication to external equipment. Since frequency converter receives external equipment fault, displaying "Fu.017" is the external equipment fault and making a stop forcefully.

## 19: Three-line running control

When select the three-line running mode under the external terminal control (regard F0.3.33/F0.3.34 as 1), define three-line running control for input terminal. See Three-line Mode Introduction (regard F0.3.35 as 2 or 3).

## 20: Stop DC braking command

When frequency inverter is in the process of deceleration stop and running frequency is lower to straight flow brake or brake starting frequency or speed, the function is effective. When the terminal status is effective, execute DC brake; only when the terminal status is ineffective, DC brake can be stopped. When operate this function, DC braking functional time F0.4.46 is ineffective.

## 21: Acceleration and deceleration forbidden

When the terminal is effective, suspend acceleration and deceleration forbidden and frequency inverter keeps current frequency operation as the acceleration and deceleration achieves; if the terminal is ineffective, execute ordinary acceleration and deceleration command.


Figure 7-32 Sketch of acceleration and deceleration forbidden

## 22: Process PID effective

When selecting the multifunctional input terminals in the process PID, the function can achieve process PID's input and cutting off.

## 23: Simple PLC multi-stage running effective

When select the multi-stage frequencies or rotation running condition input in the programmable multi-stage speed operation mode (regard F6.1.15 as \#\#\#2), the functional terminal can achieve simple PLC multi-stage running's input and cutting off.

## 24: Swing frequency running effective

If swing frequency running selects effective terminal (set F6.2.46 as \#\#\#2), the functional terminal can input and cut off swing frequency running.

If terminal status is effective, frequency converter runs swing frequency. If terminal status is ineffective, frequency inverter can accelerate and decelerate into swing frequency preset frequency [F6.2.47] for running according to effective acceleration and deceleration time (regard acquiescent value as acceleration and deceleration time 1).

## 25: Compensation PID effective

When the function of compensation PID is activated from external effective terminal selection (regard

F9.0.00 as \#\#\#2), the functional terminal can input and cut off the function of compensation PID.

## 26: Simple PLC multi-stage running status (when stopping) resetting

Simple PLC multi-stage running status when stopping can select the automatic memorized ([F6.1.15] = \#1\#\#/\#2\#\#). The functional terminal can reset the automatic memorized status forcefully.

## 27: Swing frequency status resetting (effective when stopping)

If the swing frequency's current running status is ([F6.2.46] = \#\#0\#) when swing frequency operation selects automatic memory stop, the functional terminal can reset the status of swing frequency forcefully.

## 28~30: Process PID multi-stage given terminals 1~3

Using ON/OFF status combinations of multi-stage process PID given terminals 1~3 can achieve multi-stage process PID given terminals selection as following table.

Table 7-7 Contrast table of multi-stage process PID given terminals selection

Multi-stage   process PID given   terminal 3	Multi-stage   process PID given   terminal 2	Multi-stage   process PID given   terminal 1	Process PID multi-stage given   selection
OFF	OFF	OFF	Ordinary process PID given   (determined by F7.0.01)
OFF	OFF	ON	Process PID multi-stage given 1
OFF	ON	OFF	Process PID multi-stage given 2
OFF	ON	ON	Process PID multi-stage given 3
ON	OFF	OFF	Process PID multi-stage given 4
ON	OFF	ON	Process PID multi-stage given 5
ON	ON	OFF	Process PID multi-stage given 6
ON	ON	ON	Process PID multi-stage given 7

31: Process PID setting selection (switching)
The functional terminal is applied to switch process PID setting of frequency inverter between process PID setting 1 and process PID setting 2. See process PID setting switching status as following table:
Table 7-8 Contrast table of process PID setting switching status

Terminal status	Process PID setting of frequency inverter
ON	Process PID setting 2
OFF	Process PID setting 1

32: Process PID feedback selection (switching)
This functional terminal is applied to switch Process PID feedback of frequency inverter between process PID setting 1 and process PID setting 2. See process PID switching status as following table:
Table 7-9 Contrast table of process PID feedback switching status

Terminal status	Process PID feedback of frequency inverter
ON	Process PID feedback 2
OFF	Process PID feedback 1

## 33: Process PID sleep activation

When the sleep function is activated by multifunctional input terminals (set F7.2.34 as 2), the functional terminal can activate process PID sleep function.

## 34: Torque/speed control mode switching

The functional terminal is applied to switch closed loop control mode of frequency inverter between torque control and speed control. See the closed loop control mode of frequency inverter as following table:

Table 7-10 Contrast table of closed loop control mode of frequency inverter

Terminal status	Closed loop control mode of frequency inverter
ON	Speed control mode
OFF	Torque control mode

35: Minimum torque limiting set value selection
This function is applied to switch minimum torque limiting set value of frequency inverter (negative torque limiting) between minimum torque limiting 1 and minimum torque limiting 2. See switching status as following table:

## Table 7-11 Minimum torque limiting selection contrast table of frequency inverter

Terminal status	Minimum torque limiting set value of frequency inverter
ON	Minimum torque limiting 2
OFF	Minimum torque limiting 1

36: Maximum torque limiting set value selection
This function is applied to switch maximum torque limiting set value of frequency inverter between maximum torque limiting 1 and maximum torque limiting 2. See switching status as following table:

Table 7-12 Maximum torque limiting selection contrast table of frequency inverter

Terminal status	Maximum torque limiting set value of frequency inverter
ON	Maximum torque limiting 2
OFF	Maximum torque limiting 1

40: RS485 external/Standard operation panel switching
When two operation panels are inserted to frequency inverter at the same time, one is for master control panel switching, and the other is only for monitoring, and the order cannot be inputted in.

## Table 7-13 Control command channel switching and selecting table for frequency inverter

Terminal state	Control command channel of frequency inverter
ON	RS485 external panel
OFF	Standard operation panel

## 42: Start permission

When parameter F0.4.37 is set as \#\#\#1or \#\#\#2, the function terminal is valid.

## 43: Running permission

When parameter $\mathbf{F 0 . 4 . 3 7}$ is set as \#1\#\# or \#2\#\#, the function terminal is valid.

## 44~45: Counter clock terminal

This function terminal is used for counter clock inputting.

## 46~47: Counter trigger signal

This terminal is used as counter trigger end.

## 48~49: Counter resetting terminal

This terminal is used for counter resetting signal inputting.

## 50~51: Counter auto control signal

This terminal is used for counter gated signal inputting.

## 52~54: Timer trigger signal

This terminal is used as timer trigger end.

## 55~57: Timer resetting

This terminal is used for timer resetting signal inputting.

## 58~60: Timer gated signal

This terminal is used for timer gated signal inputting.

## 61: Single pulse accumulative length value

This terminal is used for single pulse accumulative length value resetting.

## 62: Motor temperature detection contact input

When thermo switch is used as the external temperature transmitter (see parameter $\mathbf{F} 5.4 .43$ specification), this terminal is used for external thermo switch inputting.

## 63~64: Compensation PID parameter selection

When [F9.1.21] = \# \# 3 3, this terminal is used for controller parameter of compensation PID selecting.
Table 7-14 Parameter selecting table for compensation PID

Compensation PID parameter   selection 2	Compensation PID   parameter selection 1	PID effective parameter group
OFF	OFF	Group1 (F9.0.03~ F9.0.07)
OFF	ON	Group 2 (F9.1.29~F9.0.33)
ON	OFF	Group 3 (F9.1.34~F9.1.38)
ON	ON	Group 4 (F9.1.39~F9.1.43)

65: Magnetic flux brake effective
It is applied to magnetic flux brake function input and removal during the deceleration halt process.
66: Position pulse counting resetting
Adjust the position pulse counting to 0 , which is used for position origin preset default counting.

## 67: Automatic shifting jog

It is the machinery shifting dedicated function of the spindle or machinery variable speed gear. When this function is invalid, frequency drive system will operate both sides alternatively at certain period or revolving speed/moment of force so as to achieve the machinery shifting, avoiding the dead(relative function parameter: Fb.2.18, Fb.2.19).

## 68: Servo pulse command direction

This function is valid when pulse input port (DI9//Fin) is used as servo command pulse, and representative pulse direction is: invalid is positive (add plus), valid is negative (minus pulse).

## 69: Servo control effective

Switching terminal of servo control and moment of force control (relative function parameter Fb.2.23).

## 70: Spindle positioning origin photoelectric signal input

When reference signal of spindle positioning origin is photoelectric switch positioning (parameter Fb.2.36), this signal stands for spindle origin.

## 71: Spindle origin homing

When this function is valid, spindle auto positions to origin position to maintain the moment of force, and after the signal is cancelled, there is no moment of force output.

## 72: Spindle positioning selection 1

## 73: Spindle positioning selection 2

## 74: Spindle positioning selection 3

When the spindle positioning command selects external terminal selecting source (relative function parameter Fb.2.36), these multi-function terminal are used for spindle positioning angle selecting, when the following groups are valid, the spindle positions to the assigned angle and maintains the moment of force. When these terminals are invalid, there is no moment of force output.

Spindle positioning   selection 3	Spindle positioning   selection 2	Spindle positioning   selection 1	Positioning angle values
OFF	OFF	OFF	Common operation
OFF	OFF	ON	Positioning angle1(Fb.2.38)
OFF	ON	OFF	Positioning angle 2(Fb.2.39)
OFF	ON	ON	Positioning angle 3(Fb.2.40)
ON	OFF	OFF	Positioning angle 4(Fb.2.41)
ON	OFF	ON	Positioning angle 5(Fb.2.42)
ON	ON	OFF	Positioning angle 6(Fb.2.43)
ON	ON	ON	Positioning angle 7(Fb.2.44)

## 75: Position gain selection

Position gain of servo control or spindle positioning selecting.

## 76: Reserved

## 77: Servo command pulse value zero clearing

## 78~96: Reservation function

## 97: Pulse input ( $0.1 \sim 100.00 \mathrm{KHz}$ )

This function is applied to multi-function input terminal DI9/Fin (F3.0.08), and $0.10 \sim 100.00 \mathrm{KHz}$ signal can be received effectively.

## 98: pulse input (1.0~1000.0Hz)

This function is applied to multi-function input terminal DI9/Fin (F3.0.08) and 1.0~1000.0Hz low frequency signal can be received effectively.

F3.0.09 Multifunctional terminal   filtering time (DI1~DI5)	Setting range: 1~50ms	Factory default: 5
F3.0.10 Multifunctional terminal   filtering time (DI6~DI9)/standard   expansion card	Setting range: 1~50ms	Factory default: 5

Set the filtering time of the input terminal detection. When state of the input terminal changes, if it remains the same even after the filtering time setting, the terminal state change is effective, or otherwise it will remains the former state, thus the interference triggered false operation can be reduced.

## F3.0.11: Input terminal effective level (H)

Setting range: 0000~0FFF
Factory default: 0000
Define the positive and negative logic of the input terminal.
Positive logic: When DIx terminal and common port COM are connected, it is valid, or otherwise it is invalid.
Negative logic: When DIx terminal and common port COM are disconnected, it is valid, or otherwise it is invalid.

Bit place as $\mathbf{0}$ represents the positive logic; 1 represents negative logic.


Determination methods of parameter setting value are shown as following:
Table 7-15 Correspondence between Binary Number Setting and Digital Show Value

Binary number setting				Hexadecimal(digital show value)
BIT3	BIT2	BIT1	BITO	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	b
1	1	0	0	C
1	1	0	1	d
1	1	1	0	E
1	1	1	1	F

### 7.13 MULTIFUNCTIONAL OUTPUT TERMINAL (GROUP F3.1)

F3.1.12 Multifunctional output terminal DO1	Setting range: 0~71	Factory default: 1
F3.1.13 Multifunctional output terminal DO2	Setting range: 0~71	Factory default: $\mathbf{2}$
F3.1.14 Multifunctional output terminal   DO3/Fout/standard expansion card	Setting range: 0~71	Factory default: 63
F3.1.21 Multifunctional relay output   (RO1A/B/C)	Setting range: 0~71	Factory default: $\mathbf{4}$
F3.1.22 Multifunctional relay   output(RO2A/B/C) /standard expansion card	Setting range: 0~71	Factory default: 5

The control terminal D01-D03 is the on-off output terminal with programmable function, and its functions can be defined by set values of F3.1.12-F3.1.14; functions of output RO1and RO2 of relay, on-off output terminal with programmable function, can be defined by set values of F3.1.21 and F3.1.22. Please refer to the attached list for their set values and corresponding functions (Reference table of variables of multi-function output terminal (DO/EDO/SDO).

## 1: Inverter running ready

When inverter is in normal running ready state, terminal will output effective signal/relay will pull in (connection of TA and TC).

## 2: Inverter is running

When inverter is in running state, terminal will output effective signal/relay will pull in.

## 3: Equipment normal

When inverter is fault free, and DC busbar voltage is normal, terminal will effectively indicate signal/relay will pull in.

## 4: Equipment fault

When inverter goes wrong and sends fault signal, terminal will output effective signal/relay will pull in.

## 5: Equipment alarm

When there is exception of inverter and sending warning signal, terminal will output effective signal/relay will pull in.

## 6: Equipment fault or alarm

When there is fault for exception of inverter and sending fault or warning signal, terminal will output effective signal/relay will pull in.

## 7: Reverse running

When electric motor rotates reversely, the terminal will output the valid signal/relay will pull in.

## 8: Running command valid

When running instruction of inverter is valid, the terminal will output the valid signal/relay will operate.

## 9: Running at zero speed

When running instruction is valid but output frequency of inverter is at zero and there is current output, terminal will output effective signal/relay will pull in.

## 10: Speed not at zero

When the speed of rotator of electric motor is not at zero (VC mode) or output frequency is not at zero (VF or SVC mode), terminal will output the valid signal/relay will pull in.

## 11: Inverter undervoltage stop

When inverter is in under-voltage stop and reporting Fu.0.08, the terminal will output the valid signal/relay will pull in.

## 12: External control valid

When control command of frequency converter is given not on panel, terminal will output the valid signal/relay will pull in.

## 14: Running at power generating status (braking)

When inverter is in regenerative braking running state, terminal will output the valid signal/relay will pull in.

## 19: Completion of current stage of multi-stage running ( 0.5 s pulse)

After completion of current stage of multi-stage running, terminal will output the valid pulse signal with $\mathbf{0 . 5 s}$ width/relay will disconnect after pulling in for $\mathbf{0 . 5 s}$.

## 20: Multi-stage running completed ( 0.5 S pulse)

After completion of one cycle of multi-stage speed running, terminal will output the valid impulse signal with $\mathbf{0 . 5 s}$ width/relay will disconnect after pulling in for $\mathbf{0 . 5 s}$.

## 21: Multi-stage running completed (continuous level output)

After completion of one cycle of multi-stage speed running, terminal will output continuous valid signal/relay will pull in.

## 22: Multi-stage running cycle completed (0.5Spulse)

After completion of one cycle of multi-stage speed running, terminal will output effective impulse signal with $\mathbf{0 . 5 s}$ width/relay will disconnect after pulling in for $\mathbf{0 . 5 s}$.

## 23: Swing frequency upper and lower limit

After selection of wobbulation, if the frequency fluctuation range of wobbulation, which calculated based on center frequency, is above upper limit frequency F0.1.21 or below lower limit frequency F0.1.22, then terminal will output effective signal/relay will pull in.

## 24: Encoder direction

It is used to indicate the directional signal output by current encoder frequency division.

## 26/29/32: Monitoring parameters $1 / 2 / 3$ below the lower limit

When monitoring parameters $\mathbf{1 / 2 / 3}$ are below the lower limit values, terminal will output the valid signal/relay will pull in, which keeps until monitoring parameters $1 / 2 / 3$ are above the upper limit values, then output the invalid signal/relay disconnects (as shown in Figure 7-34-A).


Figure 7-33-A Monitor functional sketch 1


Figure 7-33-B Monitor functional sketch 2

## 27／30／33：Monitoring parameters 1／2／3 above the lower limit

When monitoring parameters $1 / 2 / 3$ are above the upper limit values，terminal will output effective signal／relay will pull in，which keeps until monitoring parameters $1 / 2 / 3$ are below the lower limit values，then output ineffective signal／relay disconnects（as shown in Figure 7－34－A）

## 28／31／34：Monitoring parameters $1 / 2 / 3$ between the upper limit and the lower limit

When monitoring parameters $\mathbf{1 / 2 / 3}$ are between upper and lower limit values（including equal to upper and lower limit values），the terminal will output the indicator signal／relay will pull in，as shown in Figure 7－33－C．


Figure 7－33－C Functional sketch 3 of monitor

## 36～38：Analog input Al1 wire－break detection effective

When inverter detects wire－break of analog input，it will choose to make corresponding operation according to operation after wire－break；meanwhile terminal will output effective signal／relay will pull in．

## 40～43：Counter output signal

When counting of counter reaches to setting value，terminal will output effective signal／relay will pull in． Please refer to function specifications for F5．2．20～F5．2．27 parameters

## 44～49：Timer output signal

When comparative value／periodic value of timer reaches to setting value，terminal will output effective signal／relay will pull in．Please refer to function specifications for F5．1．06～F5．1．19 parameters

## 55～62：Status of multifunctional input terminal

If D10～D18 terminals are effective，terminal will output effective signal／relay will pull in．

## 63：DO3／Fout terminal as the frequency output terminal

As frequency output terminal，frequency range of signal output by D03／Fout： $0.07-100.0 \mathrm{KHz}$ ．
64～71：虚拟输出端子的逻辑运算，请参照第 6 章＂附表2：多功能输出端子（DO／EDO／SDO）变量对照表＂

F3．1．15～F3．1．20 DO1～DO3 delay time   for terminal effective／ineffective signal   output	Setting range：   $0.01 \sim 10.00$ Sec．	Factory default： 0.0
F3．1．23～F3．1．26 RO1／RO2 power－on／   disconnection delay time	Setting range：   $0.01 \sim 10.00$ Sec．	Factory default： 0.0

This group of parameters are used to define multi－function output terminal DO1～DO3 and time delay of change for signal state output by multi－function relay $\mathrm{RO} 1 / \mathrm{RO} 2$ ．When signal output by multi－function terminal and pulled in by relay is effective，terminal will output indicator signal，and relay will pull in（connection of TA and TC）after delay time set by parameters F3．1．15～F3．1．20，F3．1．23～F3．1．26．

| F3.1.27~ F3.1.29 <br> monitor 1~3 | Input variables of | Setting range: 0~44 |
| :--- | :--- | :--- | Factory default: 0~2 |  |
| :--- |

Different state parameters can be monitored by setting the values of F3.1.27 ~ F3.1.29.

F3.1.30~F3.1.35 Upper and lower	Setting range:   $0.0 \sim 100.0 \%$	Factory default: 0.0/100.0
limit of monitor $1 \sim 3$ variables		

This group of parameters restricts the range of monitoring parameter variables, of which the set values are relative to the percentages of full monitoring variable output.

### 7.14 PULSE INPUT (GROUP F3.2)

F3.2.36 Minimum pulse input   frequency DI9/F in	Setting range: $0.0 \sim 100.00 \mathrm{KHz}$	Factory default: 0.0
F3.2.37 Maximum pulse input   frequency DI9/Fin	Setting range: $0.01 \sim 100.00 \mathrm{KHz}$	Factory default: 10.0
F3.2.38 Pulse detection cycle	Setting range: $1 \sim 20 \mathrm{~ms}$	Factory default: 10

This group of parameters defines multi-function input terminal DI9/Fin as frequency range and detection cycle of external pulse signal for pulse input (F3.0.08 is set as $97-98$ ), effective breadth of external pulse signal is $\mathbf{5 - 3 0} \mathrm{V}$.

| F3.2.39 <br> pulse | Number of single-loop | Setting range: 1~4096 |
| :--- | :--- | :--- | Factory default: 1024 $\quad$| 1 |
| :--- |

When input frequency signal of DI9/Fin terminal is used for length accumulation or speed measurement, these parameters are used to set pulse signal quantity for each rotation of encoder.

F3.2.40 Mechanical   transmission ratio(=pulse shaft   revolution: motor shaft   revolution)	Setting range: 0.010~10.000	Factory default: 1.000
F3.2.41 Driving wheel diameter   (for liner speed calculation)	Setting range:0.1~2000.0mm	Factory default: 100.0

This group of parameters is used for linear speed calculation or length accumulation.Mechanical drive ratio=Revolution of the driving wheel/Revolution of the speed measuring code wheel

F3.2.42 Maximum accumulative   length value	Setting range: $10 \mathrm{~m} \sim 50000 \mathrm{~m}$	Factory default: 50000
F3.2.43 Maximum liner speed	Setting range:   $\mathbf{0 . 0 1 \sim 5 0 0 . 0 0 \mathrm { m } / \mathrm { Sec } .}$	Factory default: 10.00

To limit the maximum accumulative length and maximum liner speed. The terminal signal can be input when it reaches or exceed the maximum value.

F3.2.44 Current accumulative   length value	Setting range: $0 \sim 50000 \mathrm{~m}$	Factory default: -
F3.2.45 Current liner speed	Setting range: $0.0 \sim 500.00 \mathrm{~m} / \mathrm{Sec}$.	Factory default: -

Parameters in read-only state are used to display calculated results of current length and linear speed.

### 7.15 PULSE OUTPUT (GROUP F3.3)

F3.3.46	Type of output pulse signal DO3/Fout	Setting range: $\mathbf{0 , 1 , 2}$	Factory default: 0

0 : Frequency signal $(\mathbf{0 . 2 5 - 1 0 0 . 0 0 K H z})$
1: Frequency signal
2: Pulse width modulation (PWM) signal/ $\mathbf{0} \mathbf{2 5 - 1 0 0 . 0 0 K H z}$
It can be used as expansion $A O$ port, and the modulation frequency is set through the maximum pulse output frequency parameter F3.3.48.

F3.3.47 Minimum pulse output   frequency DO3/Fout	Setting range: $0.25 \sim 100.00 \mathrm{KHz}$	Factory default: 0.25
F3.3.48 Maximum pulse output   frequency DO3/Fout	Setting range: $0.25 \sim 100.00 \mathrm{KHz}$	Factory default: 10.0

This group of parameters define the frequency range of the output pulse when the multifunctional output terminal DO3/Fout is used as pulse output (Function No. 63). Different setting of output type of pulse signal results in different output frequency range.

F3.3.49 Pulse output mapping   variable	Setting range: 0~45	Factory default: 0

Please refer to "Table of Monitoring Parameter Variables".

F3.3.50 DO3/Fout assignment   lower limit	Setting range: 0.0~[F3.3.51]	Factory default: 0.0
F3.3.51 DO3/Fout assignment   upper limit	Setting range: [F3.3.51]~100.0\%	Factory default: 100.0

This group of parameters can determine the corresponding relationship between maximum, minimum frequency and pulse output mapping variables, while the set values are the percentages of full pulse output mapping variables. Corresponding relationship between the two is as shown in Figure 7-34:


Figure 7-34 Characteristic curve of pulse output Fout

### 7.16 ANALOG INPUT (GROUP F4.0)

## F4.0.00~F4.0.05 Minimum and maximum values of analog input Al1~Al3

$\square$ --

This group of parameters is used to define the setting range of analog input signal, which need to be set according to actual situation of access signal.

Al1 analog input port is unipolar voltage signal; Al2 analog input port is unipolar current signal; Al3 analog input signal is bipolar voltage signal.


Figure 7-35-A Sketch of Al1 analog input and corresponding variables (unipolarity)


Figure 7-36-A Sketch of AI3 analog input and corresponding variables (unipolarity)


Figure 7-35-B Sketch of Al1 analog input and corresponding variables(biolarity)


Figure 7-36-B Sketch of Al 3 analog input and corresponding variables bipolarity)

When the unipolar input signal AI1 and Al 2 are applied as bipolar signal, if input signal breaks and input value is maximum reserve setting, it may be dangerous to human and property safety. Please use in combination with broken-line fault detection function of analog input port.

## F4.0.06~F4.0.08 Analog input Al1~Al3 filtering time coefficient <br> Setting range: 1~1000ms <br> Factory default: 10

Carry out filtering treatment to external analog input quantity to effectively eliminate interference signal. Filtering time constant (time needed for given signal rising to $63 \%$ of stable value) should be set properly according to fluctuation range of external input signal, if set it too high, anti-interference capacity will be strong while delaying the speed of response to setting signal.

### 7.17 ANALOG INPUT CURVE CORRECTION (GROUP F4.1)

## F4.1.09~F4.1.21 Analog input AI1~AI31 curve correction point/value 1~3 <br> $\qquad$

This group of parameters is used to conduct nonlinear correction to analog input value as required. Curve correction of analog input Al1 is as shown in figure 7-37, while the curve correction methods of AI2 and AI3 are similar to analog input Al1.


Figure 7-37 Curve correction of analog input Al1

F4.1.17 Analog input Al3 zero hysteresis /standard expansion card

Setting range: 0.00~2.00
Factory default: 0.10

Set hysteresis width of middle point between maximum value and minimum value of AI3, when it is applied as bipolar signal, forward and reverse fluctuation of zero setting value will be frequent as shown in Figure $7-38$. It should be set as 0 when applied as unipolar signal.

### 7.18 ANALOG OUTPUT (GROUP F4.2)

F4.2.22 Mapping variable of   multifunctional analog output AO1	Setting range: $0 \sim 45$	Factory default: 0
F4.2.23 Mapping variable of   multifunctional analog output   hddaaaAO2/standard expansion card	Setting range: $0 \sim 45$	Factory default: 2

Multifunction analog output AO1, AO2 can output voltage signal of $0 \sim 10 \mathrm{~V}$ or current signal of 1~20mA, selected by the dial switch on the control board. Frequency inverter status represented by the analog output signal is set by this group of parameters. Please see Appendix 3 (comparison table of monitor variables).

F4.2.24 AO1 minimum	Setting range: $0.00 \sim 10.00 \mathrm{~V}$	Factory default: 0.0
F4.2.25 AO1 maximum	Setting range: $0.00 \sim 10.00 \mathrm{~V}$	Factory default: 10.00
F4.2.30 AO2 minimum   /standard expansion card	Setting range: $0.00 \sim 10.00 \mathrm{~V}$	Factory default: 0.0
F4.2.31 AO2 maximum   /standard expansion card	Setting range: $0.00 \sim 10.00 \mathrm{~V}$	Factory default: 10.00

This group of parameters defines the maximum and minimum of multifunction analog output AO1, AO2 allowed to output.

F4.2.26 AO1 lower limiting   value	Setting range: 0.0~[F4.2.27]	Factory default: 0.0
F4.2.27 AO1 upper limiting   value	Setting range: [F4.2.26]~100.0\%	Factory default: 100.0
F4.2.32 AO2 lower limiting   value/standard expansion   card	Setting range: 0.0~[F4.2.33]	Factory default: 0.0
F4.2.33 AO2 upper limiting   value/standard expansion   card	Setting range: [F4.2.32]~100.0\%	Factory default: 100.0

Corresponding relationship between maximum and minimum of AO1, AO2 output given by this group of parameters and mapping variable (see figure below), whose set value is the percentage relevant to the full output of mapping variable of AO1, AO2.


Figure 7-38 AO output characteristic curve

F4.2.28 AO1 filtering time coefficient	Setting range:   $0.01 \sim 10.00 \mathrm{Sec}$.	Factory default: 0.10
F4.2.34 AO2 filtering time   coefficient/standard expansion card	Setting range:   $0.01 \sim 10.00 \mathrm{Sec}$.	Factory default: 0.10

This group of parameters is used to set the filtering time coefficient of AOI, AO2 analog output signal, according to selection of requirements of the rapidity and wave character of signal. The larger the time coefficient is, the smoother the output signal is, and the slower the response is.

F4.2.29 AO1 fixed output value	Setting range: $\mathbf{0 . 0 0 \sim 2 0 . 0 0 \mathrm { mA }}$   $(0.00 \sim 10.00 \mathrm{~V})$	Factory default: $\mathbf{0 . 0}$
F4.2.35 AO2 fixed output   value/standard expansion card	Setting range: $\mathbf{0 . 0 0 \sim 2 0 . 0 0 \mathrm { mA }}$   $(0.00 \sim 10.00 \mathrm{~V})$	Factory default: $\mathbf{0 . 0}$

When the mapping variable of multifunction analog output AO1, AO2 is a fixed value (F4.02.22, F4.2.23 is set as 45), fixed value of AO1 output is [F4.2.29], and the fixed value of AO2 output is [F4.2.35], which can output voltage and current signal.

### 7.19 ANALOG INPUT WIRE-BREAK DETECTION (GROUP F4.3)

On condition that break detection function of analog input is valid, when the value of Al1, Al2 and Al3 analog input is within the range of detection threshold level, when the frequency inverter passes the action of break detection delay, conduct corresponding action according to the selected setting after the wire-break action.

F4.3.39	Action selection after Al1 wire-break	Setting range:0~4	Factory default:0
F4.3.43	Action selection after Al2 wire-break	Setting range:0~4	Factory default:0
F4.3.48	Action selection after AI3 wire-break	Setting range:0~4	Factory default:0

Define corresponding actions after frequency inverter detects analog input wire-breakage.

## 0: No action (for non-stop alarm)

When detecting analog input wire-break, if the frequency inverter operates normally, it only reports aL. 036 -aL. 038 warning signal. If the wire-break fault is cleared, the warning signal can be cleared automatically.

## 1: Forcedly set to the minimum

When detecting analog input wire-break, if the frequency inverter operates normally, it reports aL.036aL. 038 warning signal. Meanwhile, forcedly set the analog input signal to the minimum of analog input. If the wire-break fault is cleared, the warning signal can be cleared automatically, meanwhile, the analog input signal recovers to input value.

## 2: Forcedly set to the maximum

When detecting analog input wire-break, if the frequency inverter operates normally, it reports aL.036aL. 038 warning signal. Meanwhile, forcedly set the analog input signal to the maximum of analog input. If the wire-break fault is cleared, the warning signal can be cleared automatically, meanwhile, the analog input signal recovers to input value.

## 3: Forcedly set to the default value

When detecting analog input wire-break, if the frequency inverter operates normally, it reports aL.036aL. 038 warning signal. Meanwhile, forcedly set the analog input signal to the default input value of analog input. If the wire-break fault is cleared, the warning signal can be cleared automatically, meanwhile, the analog input signal recovers to input value.

## 4: Inverter forced trip stop

When detecting analog input wire-break, it reports Fu.036~Fu. 038 fault signal and lock output, and load motor freely sliding down. If the wire-break fault is cleared, fault signal shall be cleared with hand-reset.

### 7.20 HOPPING FREQUENCY (GROUP F5.0)

Hopping frequency function makes the output frequency of frequency inverter to avoid the mechanical resonant frequency point of machine loaded.

Setting frequency of frequency inverter can operate with hopping frequency near some frequency point as the method in the figure below, with $\mathbf{3}$ hopping ranges defined at most.

After hopping frequency parameters are set, even the setting frequency of frequency inverter is within the mechanical resonant frequency band of driving system; output frequency of frequency inverter will still adjust out of the mechanical resonant band, operating with lower limiting value of the hopping range of this hopping frequency.


Figure 7-39 Schematic diagram of hopping frequency output

### 7.21 BUILT-IN AUXILIARY TIMER (GROUP F5.1)

This group of parameters is mainly instructed by taking example of timer 1 .

### 7.21.1 BASIC FUNCTIONS OF THE TIMER



Figure 7-40-A Schematic diagram of comparison value of Timer 1 reaching for the basic function (F5.1.06=11\#1)


Figure 7-40-B Schematic diagram of comparison value of Timer 1 reaching for the basic function (F5.1.06=11\#1)

### 7.21.2 TRIGGER AND GATE CONTROL FUNCTION SETTING OF TIMER



Figure 7-40-C
Starting trigger and gate control signal function of timer 1 (UT1) (F5.1.06=1111; F5.1.15=0001)

### 7.21.3 CLOCK CONCATENATION FUNCTION SETTING OF TIMER



Figure 7-40-D Pulse concatenation function of timer 1 (UT1) (F5.1.06=11\#1; F5.1.07=\#\#\#3)

### 7.21.4 CONCATENATION TRIGGER FUNCTION SETTING OF TIMER



Figure 7-40-E Concatenation trigger function setting of timer (UT1, UT2, UT3)

### 7.22 BUILT-IN AUXILIARY COUNTER (GROUP F5.2)

Similar to the function of timer, the counter is designed for external clock (unknown frequency variable), and timer is designed for the internal clock (known and determined frequency). With the terminal function of analog input output, it can transfer the counter into the function of timer.

Differences: Counter will continue to count upwards without reset, and start from 0 on until overflow.


Figure 7-41-A Counter function 1


Figure 7-41-B Counter function 2

### 7.23 AUXILIARY FUNCTIONS (GROUP F5.3)

## F5.3.28 Priority selection of frequency

 (revolution) command sourceSetting range: 0000~7777

Factory default:0000

This parameter is used to define the priority order of (revolving speed) instructions source of given frequency. When the setting channel with higher priority is invalid, frequency set value of frequency inverter will automatically set value with the frequency of next top priority.

Table 7-16 Frequency Setting Order of A510 Frequency Inverter:


## F5.3.29 Lower limiting frequency action mode <br> Setting range: 0, 1 <br> Factory default: 0

## 0 : Output 0 frequency when it is below the lower limiting frequency

## 1: Output the lower limiting frequency when it is below the lower limiting frequency

## F5.3.30 Automatic voltage regulation (only effective in V/F mode)

Setting range: 0, 1, 2
Factory default: 0

This parameter applies to the situation that frequency inverter operates with V/F mode, forcedly operate with VC, SVC modes. Automatic voltage regulation function is used for ensuring the output voltage of frequency inverter not fluctuate as the input voltage fluctuates. In condition that grid voltage fluctuates greatly, while stable stator voltage and current of motor is required, this function shall be operated.

## 0 : Closed

1: Effective

## 2: Void during deceleration

## F5.3.31 Automatic energy-saving operation (only effective for asynchronous motors)

Setting range: 0,1
Factory default: 0

Magnetic flux operates optimally, and valid with asynchronous machine. Automatic energy saving operation refers to frequency inverter can detect the load condition of motor automatically, and adjust output voltage timely to make the motor operate at high efficient status, to reach optimal effect of energy saving.

Automatic energy saving operation has the best effect when the load change of motor is with low frequency and wide range. The major energy saving way is to obtain additional energy saving effect from adjusting the status of motor excitation, to make the motor operate at optimal high efficient status, and greatly lower the energy consumption of motor.

Due to the specific corresponding relationship of draught fan, pump load and revolving speed, load
condition can be judged according to the output frequency. It is a typical special case of automatic energy saving operation applying drop torque V/F curve. When applying drop torque V/F curve (F1.2.17, F1.3.29 selection as $\mathbf{1 , 2 , 3}$ ), without necessary of operating the automatic energy saving operation function.

F5.3.32	Magnetic flux brake	Setting range: $\mathbf{0 , 1 , 2}$

Frequency inverter can increase the magnetic flux when the motor slows down to stop, to make the motor stops more rapidly (see the figure below).

The electric energy produced during the braking process is manly consumed in form of heat inside of the motor. Therefore, frequent braking with magnetic flow will lead to the internal temperature of the motor increase. Please be sure the motor temperature shall not over the maximum admissible value.

When input operation order during magnetic flow braking, magnetic flow will be canceled, and frequency inverter will speed up again to the selected frequency.

When applying braking resistor, please set the flux braking void.


Figure 7-42 Magnetic flow braking curve

## F5.3.33 Magnetic flux braking

 strengthThis parameter defines the increased amplitude of motor magnetic flow when magnetic flow braking, selected value is the relevant percentage of rated magnetic flow.

F5.3.34 Voltage over modulation	Setting range: $\mathbf{0 , 1}$	Factory default: $\mathbf{1}$

Voltage over modulation refers to that in condition of lasting low grid voltage or lasting heavy load operation, frequency inverter improve the output voltage with improving the utilization rate of its bus voltage. When over modulation function is valid, output current harmonic will increase slightly.

```
0: Void 1: Effective
```

F5.3.35 Use ratio of dynamic braking	Setting range: 50~100\%	Factory default: 100
F5.3.36 Level of dynamic braking   starting action	Setting range: 700~760V	Factory default: 720

These two parameters is valid to frequency inverters with built-in braking unit ( 18.5 KW below), used to define action parameters of built-in braking unit of frequency inverters. When the voltage at internal direct current side of frequency inverter is higher than starting action level of dynamic braking [F5.3.36], build in braking unit action. If there is external braking resistor, it shall make the direct current voltage fall back, via releasing pumped-up voltage energy with braking resistor. When the voltage at DC side drops down to a specific value, the built-in braking unit of the frequency inverter closes.

Utilization rate of dynamic braking is used to define the average voltage value forced on braking resistor of braking unit action. Voltage on braking resistor is pulse width modulation wave. Duty ratio equals to action ratio of dynamic braking. The large the action ratio is, the faster energy releases, and the more obvious the effect is, as well as the larger power consumed on braking resistor is. Operator may consider setting the parameters comprehensively according to the resistance of braking resistor, power and required braking effect.


Figure 7-43 Dynamic braking

F5.3.37 Vibration suppression   coefficient	Setting range: 0.0; 0.1~10.00	Factory default: $\mathbf{0 . 0}$

Only valid with V/F control method. Selecting this parameter can restrain the output current oscillation.
Setting 0.0 to close this function. The larger the value is, the slower restraining action is and the wider the biggest adjustment range is.

F5.3.38 Load dynamic balance   function	Setting range: 0, 1,2	Factory default: $\mathbf{0}$
F5.3.39 Reference source for   dynamic balance load	Setting range: $\mathbf{0 \sim 5}$	Factory default: 0
F5.3.40 Reference value for   dynamic balance load	Setting range: $\mathbf{0 . 0 \sim 2 0 0 . 0 \%}$	Factory default: 100.0
F5.3.41 Dynamic balance   adjustment gain	Setting range: $0.0 \sim 100.00$	Factory default: 50.00
F5.3.42 Dynamic balance   adjustment limit	Setting range:0.00~100.00(\%)	Factory default: 1.00

Load dynamic balance function is used for balancing load with multiple motors linkage, or occasions requiring torque motor characteristics of Frequency inverter-asynchronous electrical units.

When this function is valid, frequency inverter shall take the input value of dynamic balance load reference source (relative value of rated current) as reference, automatically amend the input of frequency/ revolving speed integrator, adjusting output frequency to balance the load. The adjustment to output frequency for dynamic balance function is relatively slow, and influenced by selections of acceleration and deceleration time.

If rapid response of linkage balance operation is required, please apply with linkage operation self-balancing function (referring to instruction of parameters in FA group), or applying with compensation PID to build flexibly as necessary, which can conduct adjustment directly to the output of frequency integrator.

Adjusting gain value=[F5.3.41]*rated current of equipment/100, when the difference of output current and reference value reaches the adjusting gain value, output frequency will drop to the adjusting amplitude limit value.

Adjusting amplitude limit value= [F5.3.42] ${ }^{\star}$ current selected frequency/100, this value is the amplitude peak of dynamic balance adjustment.


Figure 7-44
Sketch of load dynamic balance function


Figure 7-45
Sketch of dynamic balance variables

### 7.24 MOTOR TEMPERATURE DETECTION (GROUP F5.4)

## F5.4.43 Type 2 of motor temperature sensor

This parameter is referred to types of the selected motor temperature sensor; the different selected motor temperatures sensor with different internal algorithms results in corresponding changes in units of F5.4.46 and F5.4.47: When the sensor is the thermoswitch/PT100, their units are ${ }^{\circ} \mathrm{C}$; When the sensor is PTC, their units are $\Omega$.

0 : None
1: $1 \times$ PT100
2: $2 \times$ PT100
3: $3 \times$ PT100
4: PTC sensor

## 5: Thermoswitch (normally closed)

## 6: Thermoswitch (normally open)

The motor temperature can be measured by connecting the PT100 or PTC sensor to the analog input and output interfaces of frequency converter. See Figure 7-46-A and Figure 7-46-B for wiring:


Figure 7-46-A Motor temperature measurement wiring 1


Figure 7-46-B Motor temperature measurement wiring 2


Figure 7-46-C Motor temperature measurement wiring 3

The motor temperature can also be measured by connecting the thermoswitch to multifunctional input terminals of frequency inverter (Function No. 62). See Figure 7-46-C for wiring (such as DI6 terminal, that is, F3.0.05 = 62):

F5.4.44 Sensor current source   providing terminal	Setting range: 0~2	Factory default: 100.0

The functional parameter is used to define the current source port of PT100 or PTC sensor.
0 : None
1: AO1
Sensor current source port is the multifunctional analog output AO1 and the signal type of output should be current signal (dial switch of control panel).

## 2: AO2

Sensor current source port is the multifunctional analog output AO2 and the signal type of output should be current signal (dial switch of control panel).
> The parameter will not only modify but also lock the selected AO port's relevant parameters, and set them forcibly as fixed value output. When using PT100 sensor, the port supplies 4.00 mA 's constant current; When using PTC sensor, the port supplies 1.60 mA 's constant current.

F5.4.45	Temperature input channel	Setting range: 0~3

This parameter is used to define the input channel of temperature signal.
0 : None
1: Al1 input (PT100 or PTC)
The temperature signal of PT100 or PTC sensor should be inputted through analogy input Channel Al1.

## 2: Al3 input (PT100 or PTC)

The temperature signal of PT100 or PTC sensor should be inputted through analogy input Channel AI3.

## 3: DI1~DI9 (thermoswitch)

The temperature signal of thermoswitch should be inputted through multifunctional input terminals Channel D1-D19 (Function No. 62).

F5.4.46 Warning action   threshold value	Setting range: $-10.0 \sim 500.0^{\circ} \mathrm{C}$   $(0 \sim 5000 \Omega /$ PTC $)$	Factory default: 110.0
F5.4.47 Protection action   threshold value	Setting range: $-10.0 \sim 500.0^{\circ} \mathrm{C}$   $(0 \sim 5000 \Omega /$ PTC $)$	Factory default: 130.0

This parameter is used to define the alert action point and protective action point for over-temperature detection; the unit should be determined by the motor temperature sensor used.

### 7.25 MULTI-STAGE FREQUENCY SETTING (GROUP F6.0)

F6.0.00~ F6.0.14 Opening   frequency $1^{\text {st }} \sim 15$ th	Setting range:   [ F0.1.22] $\sim[$ F0.1.21]	Factory default: 5.00~50.00

The parameter is for the setup of multi-stage operation's frequency and can be used to multistage velocity operation and simple programmable multi-stage operation. Refer to the detailed specifications of multi-velocity control function 1, 2, 3, 4 of multifunctional input terminals F3.0.00-F3.0.07 and simple programmable multistage operation in F6.1 group parameters. Frequency inverter can transform frequency and direction automatically according to the running time to satisfy the requirement of technology, as Figure 7-47-A shown.


PLC cycling completion indicator
Figure 7-47-A Simple PLC operation

In the figure, a1-a15 and d1-d15 are current stage's time of acceleration and deceleration, while f1-f15 and T1-T15 are current stage's given frequency and operating time. All these will be defined in this parameter respectively.

The completion of simple programmable multi-stage operation for stage, cycle and so on can access to multifunctional output terminals or relay's output index signal. Refer to Function 20, 21 (multi-stage operation completed) and 22 (multi-stage operating cycle completed) among the F3.1.15-F3.1.20.

## F6.0.15 Selection of programmable multi-stage speed operation mode

Setting range: 0000~1254
Factory default:0000

## The unit: Function selection

## 0 : Function closed

## 1: Multi-stage frequency/revolution operation effective

In case of frequency (revolution) instruction source allowed to the priority, the frequency converter operates in multi-stage frequency/revolution.

## 2: Multi-stage frequency/revolution operation condition effective

When multifunctional input terminal (Function No.23) is valid, frequency inverter operates in multi-stage frequency/revolution; when it is invalid, frequency inverter will automatically access to frequency setup mode allowed to the lower priority.

## 3: Multi-stage PID setting operation effective

When the process PID starts its function, the setup of PID should be set automatically according to given time cycle, at most 7 stages being set (F7.1.27 ~ F7.1.33).

## 4: Multi-stage PID setting operation condition effective

When multifunctional input terminal (Function No. 23) is valid, the multi-stage setting of process PID is also valid, at most 7 stages being set (F7.1.27~F7.1.33).

## Tens: Operation mode

## 0 : Single cycle

Frequency inverter should firstly operate with first multi-stage speed set frequency and output each velocity's frequency according to given operating time. If the given operating time of a certain velocity is of zero, jump out of the velocity; with a cycle's operation, the frequency inverter should stop outputting and input an effective operating instruction once again to run the next cycle. See as Figure 7-47-B.


Figure 7-47-B Simple PLC operation single cycle mode

## 1: Single cycle stop mode

The basic operation mode is the same as mode $\mathbf{0}$ and its difference is that after frequency inverter operates a stage speed, it firstly lowers the output frequency to zero according to specified deceleration time, then outputs next stage's frequency.


Figure 7-47-C Single cycle stop mode of simple PLC operation

## 2: Continuous cycling mode

As the figure shown, the frequency inverter starts next cycle after automatically after it finishes a cycle until it receives stop instruction.


Figure 7-47-D Continuous cycling mode of simple PLC operation

## 3: Continuous cycle stop mode

Basic operation mode is the same as mode 2 and its difference is that after frequency inverter operates a stage speed, it firstly lowers the output frequency to zero according to specified deceleration time, then outputs next stage's frequency.

## 4: Keeping the final value

As the figure shown, the frequency inverter will keep the last stage's operation frequency and direction automatically after it finishes a cycle.


Figure 7-47-E Simple PLC operation keeping the final value mode

## 5: Keeping the final value stop mode

Basic operation mode is the same as mode 4 and its difference is that after frequency inverter operates a stage speed, it firstly lowers the output frequency to zero according to specified deceleration time, then outputs next stage's frequency.

## Hundreds: Selection of breakpoint/stop recovery mode

0 : Restore running at the first stage

In simple programmable multi-stage operation, frequency inverter will clear out current operation state automatically after it stops because of error stop or stop instruction; restore running at the first stage after it starts again.

## 1: Start running at the interruption time (effective for multi-stage frequency/revolution operation)

In simple programmable multi-stage operation, frequency inverter will record the stage operation time and operation frequency automatically at the interrupting time after it stops because of error stop or stop instruction; start running at the interruption time after it starts again.

## 2: Start running at the stage of interruption

In simple programmable multi-stage operation, frequency inverter will record the stage operation time and operation frequency automatically at the interrupting time after it stops because of error stop or stop instruction; start running at the stage of interruption after it starts again. The single difference between mode 1 and 2 is the different frequencies at the stage of interruption. See as Figure 7-48.


Figure 7-48 Breakpoint recovery sketch

## Kilobit: Power-off status storage

## 0: Not stored

When the frequency converter fails power, it does not store the simple programmable multi-stage operation and starts operating from the first stage after power comes again.

## 1: Stored

When the frequency converter fails power, it stores the simple programmable multi-stage operation, including the power-off status, operation frequency, operated time, and operates according to the parameter's breakpoint/stop recovery mode of hundred definition after power comes again.

### 7.26 SIMPLE PROGRAMMABLE MULTI-STAGE OPERATION (GROUP F6.1)

## F6.1.16~ F6.1.30 Setting of stage1~15 $\quad$ Setting range:0000~1321 $\quad$ Factory default:0000

The unit: Operating frequency source/setting source at each stage
0 : Multi-stage frequency setting 1~15/Process PID multi-stage setting (1~7)
Stage operation frequency set values should be set by multi-stage frequency setting 1~15 (Group F6.0) / Process PID multi-stage setting 1~7 (Group F7.1).

## 1: Frequency command (F0.1.16)/Process PID setting (F7.0.01)

Stage operation frequency set values should be set by frequency command (F0.1.16)/Process PID setting (F7.0.01).

## F6.1.31~ F6.1.45 Stage 1 running time <br> Setting range: 0.0~6500.0 <br> Factory default: 0.0

The parameter is used to the setting of each stage's operation time; when it occurs to a zero, it means jumping over this operation stage.

### 7.27 SWING FREQUENCY OPERATION (GROUP F6.2)

Swing frequency operation is regulated by upper and lower boundary of frequency. If the function's parameter group is improper, swing frequency operates properly.


Figure 7-49 Swing frequency operation sketch

F6.2.46	Function selecting (H)	Setting range: 0000~1112
Factory default:0000		

The unit: Function Setting

## 0 : Function closed

The functional parameter of Group F6.2 is void.

## 1: Function effective

In case of frequency (revolution) instruction source allowed to the priority, the frequency inverter adopts
swing function.

## 2: Terminal selectivity effective

When the multifunctional input terminal of definition 24 (swing operation input) is valid, the frequency inverter adopts swing function In case of frequency (revolution) instruction source allowed to the priority. If it invalidates, frequency converter operates with the set value of swing frequency preset frequency F6.2.47. In this mode, preset frequency waiting time invalidates.

F6.2.47 Swing frequency preset   frequency	Setting range: $0.00 \sim[F 0.1 .21]$	Factory default: 10.00
F6.2.48 Preset frequency waiting   time	Setting range: $0.0 \sim 6000.0$ Sec.	Factory default: 0.0

Preset frequency is referred to the operation frequency before frequency inverter adopts swing frequency operation or breaks away from operation frequency of swing frequency operation. Determine the operation mode of preset frequency according to the instruction of swing frequency function.

When the selected swing frequency function is valid ([F6.2.46]=\#\#\#1), frequency inverter starts swing frequency preset frequency after running, then runs the swing frequency operation status via the process of preset frequency waiting time.

In case of the selected swing frequency function terminal available ([F6.2.46]=\#\#\#2), when swing frequency operation input terminal is valid, frequency inverter runs the swing frequency operation status; When it invalidates, frequency converter outputs preset frequency ([F6.2.47]), and the preset frequency waiting time is unavailable.

F6.2.49 Swing frequency amplitude $\quad$ Setting range: 0.0~50.0\% $\quad$ Factory default:10.0
Swing frequency amplitude is the ratio of swing frequency amplitude.
When it occurs to fixed swing frequency amplitude ([F6.2.46]=\#0\#\#), mathematics of practical swing frequency amplitude is:

Practical Swing frequency amplitude $=[$ F6.2.49] $\times$ maximum frequency $[F 0.1 .20]$
When it occurs to changeable swing frequency amplitude ([F6.2.46]=\#1\#\#), mathematics of practical swing frequency amplitude is:

Practical Swing frequency amplitude= [F6.2.49] $\times$ (preset frequency of swing frequency center [F6.2.53] +frequency set value F0.1.16)

| F6.2.50 | Sudden jump frequency | Setting range: $\mathbf{0 . 0} \mathbf{~ 5 0 . 0 \%}$ |
| :--- | :--- | :--- | Factory default: 10.0

Sudden jump frequency is the amplitude of frequency's fast descending after it reaches upper boundary in swing frequency cycle, that is, the amplitude of frequency's fast ascending after it reaches lower boundary.

Practical sudden jump frequency $=[$ F6.2.50] $\times$ practical swing frequency amplitude.

F6.2.51 Triangular wave rising time	Setting range:0.0~1000.0Sec.	Factory default:10.0
F6.2.52   decreasing time	Setting range: $0.0 \sim 1000.0$ Sec.	Factory default:10.0

The parameter in this group is referred to acceleration and deceleration slope in the process of swing frequency.

Triangular wave rising time is referred to the time spent from the lower boundary frequency to the upper boundary frequency in swing frequency operation, that is, the acceleration time in the cycle of swing
frequency operation.
Triangular wave decreasing time is referred to the time spent from the upper boundary frequency to the lower boundary frequency in swing frequency operation, that is, the deceleration time in the cycle of swing frequency operation.

The sum of triangular wave rising time and decreasing time is the swing frequency operation cycle.

## F6.2.53 Frequency setting in the center of the swing frequency

Setting range: 0.00~[F0.1.21]
Factory default: $\mathbf{1 0 . 0 0}$

Frequency setting in the center of the swing frequency is referred to the center value of frequency converter output frequency in the process of swing frequency operation.

Center frequency of practical output $=[$ F6.2.53 $]+$ F0.1.16 certain set frequency.

Refer to the following figure for the structure of Process PID and functions of each functional parameters:


Figure 7-51 Schematic block of process PID control

### 7.28 PROCESS PID (4ms CONTROL CYCLE) (GROUP F7.0)

F7.0.04 Analog input quantity corresponding to $0 \%$ setting (Channel 1)	Setting range: 0.0V~[F7.0.05]/   AI2: $0.0 \mathrm{~mA} \sim[F 7.0 .05]$	Factory default: 0.0
F7.0.05 Analog input quantity corresponding to $100 \%$ setting (Channel 1)	$\begin{aligned} & \text { Setting range: }[F 7.0 .04] \sim 10.00 \text { I } \\ & \text { A12: [F7.0.04] } 20.00 \mathrm{~mA} \end{aligned}$	Factory default:10.00
F7.0.06 Analog input quantity corresponding to $0 \%$ setting (Channel 2)	Setting range: 0.0V~[F7.0.07]/ Al2: $0.0 \mathrm{~mA} \sim[F 7.0 .07]$	Factory default: 0.0
F7.0.07 Analog input quantity corresponding to $100 \%$ setting (Channel 2)	$\begin{aligned} & \text { Setting range: }[F 7.0 .06] \sim 10.00 \text { I } \\ & \text { A12: [F7.0.06] } 20.00 \mathrm{~mA} \end{aligned}$	Factory default:10.00

When analog channel input is selected for setting source of process PID, corresponding relationship between set value of process PID and analog port can be altered with this group of parameters. The corresponding relationship is shown in Figure 7-51.

F7.0.12 Analog feedback quantity corresponding to $0 \%$ feedback (feedback channel 1)	Setting range: $0.0 \sim[F 7.0 .13] / \mathrm{Al2}$ : $0.0 \mathrm{~mA} \sim[F 7.0 .13]$ $0.0 \mathrm{~mA} \sim[F 7.0 .13]$	Factory default: 0.0
F7.0.13 Analog feedback quantity corresponding to $100 \%$ feedback (feedback channel 1)	$\begin{aligned} & \text { Setting range: [F7.0.12]~10.00V I } \\ & \text { AI2: [F7.0.12] ~20.00mA } \end{aligned}$	Factory default: 5.00
F7.0.14 Analog feedback quantity corresponding to $0 \%$ feedback (feedback channel 2)	Setting range: $0.0 \sim[F 7.0 .15] / \mathrm{Al2}$ : $0.0 \mathrm{~mA} \sim[F 7.0 .15]$	Factory default: 0.0
F7.0.15 Analog feedback quantity corresponding to $100 \%$ feedback (feedback channel 2)	$\begin{aligned} & \text { Setting range: [F7.0.14]~10.00V I } \\ & \text { AI2: [F7.0.14] ~20.00mA } \end{aligned}$	Factory default: 5.00

When the analog channel input is selected for feedback source of process PID, corresponding relationship between feedback value of process PID and analog port can be altered with this group of parameters. The corresponding relationship is shown in Figure 7-52.


Figure 7-52 Sketch of definition of set value of process PID


Figure 7-52 Sketch of corresponding relationship of feedback value of process PID

F7.0.16	Feedback multiplication factor	Setting range:0.01~100.00	Factory default:1.00

This function is mainly applied in occasions of flow calculation with differential pressure. When the feedback value is not in accordance with the given value of process PID, while there is a certain linear relation, this group of parameters can be selected to make it accordant of the meaning expressed by feedback value and given value of process PID. For example, if the given value of process PID means flow of the pipe, feedback value of process PID means flow rate of the pipe, supposing the set value of this parameter means cross sectional area (CSA) of the pipe, then the given value and feedback value of process PID shall be in accordance.

F7.0.17 Proportional gain	Setting range: 0.0~100.00	Factory default: 2.00
F7.0.18 Integral time	Setting range: 0.0, 0.1~1000.0Sec.	Factory default: 20.0
F7.0.19 Differential   coefficient	Setting range: 0.0,0.01~10.00	Factory default: 0.0
F7.0.20 Differential inertia   filtering time	Setting range: 0.01~100.00 Sec.	Factory default: 10.00

Proportional gain defines the magnification of deviation. The bigger the set value is, the faster the response of system is, but oscillation can be caused when it's too big; the smaller the set value is, the slower the response is.

Adjusting only with proportional gain will not eliminate the deviation completely. In order to eliminate the remained deviation, integral time shall be selected. The smaller the integral time is set, the faster the response is, but oscillation of system can be caused when it's too big or too small.



Figure 7-53 Function of integral control
Differentiator can make response to the change rate of deviation. The larger the change is, the larger the output gain is, and that is, its gain is in proportion to change rate of deviation. But it won't make response to constant deviation. When differential coefficient is 0.0 , it means the differential function closing the controller. Differential function can improve the responsibility of system.

The larger the differential coefficient is set, the stronger the differential function is. In general system, there is no need to introduce differential link.

Larger differential inertia filtering time can make the differential adjustment more smooth, generally, it's set in proportion to the inertia of system.

F7.0.21 PID controller   characteristics configuration	Setting range: 0000~0111	Factory default: 0000

The unit: Dviation polarity

## 0: Positive deviation

When feedback signal gets weaker, PID output is increased.

## 1: Negative deviation

When feedback signal gets weaker, PID output is decreased.

## Tens: output polarity

## 0: Unipolarity

## 1: Bipolarity

For unipolarity of PID control mode, output of PID adjuster is always positive value, lower limit is 0 . For frequency settings, operation direction of frequency inverter is determined with external control order, while PID output can't change the operation direction. Generally, it applies for devices without motor reversal for water and pressure delivery.

For bipolarity of PID control mode, output of PID adjuster is negative value. For frequency settings, operation direction of frequency inverter is determined with external control order and "exclusive OR" calculation of PID output direction, and PID output can change the operation direction. If the direction lock parameter (F0.1.17) is valid, efficient PID output shall take the absolute value. Refer to Figure 7-54-A and Figure 7-54-B.


Figure 7-54-A Single polarity of PID control mode


Figure 7-54-B Dual polarity of PID control mode

F7.0.22 Permitted static deviation   (relative 100\% setting)	Setting range:0.0~20.0\%	Factory default: 5.0

Controller output value is the permitted maximum deviation amount with given value of controller. When feedback value is within the range of maximum deviation range, the controller stops adjusting. Proper setting of his function contributes to covering the accuracy and stability of output of system.


Figure 7-55 Sketch of static deviation

F7.0.23 PID output preset	Setting range: $0.0 \sim 100.0 \%$	Factory default: 0.0
F7.0.24 Preset hold time before   PID starting	Setting range: $0.0 \sim 3600.0$ Sec.	Factory default: 0.0

This function can make it earlier to access to the sable stage for PID adjustment. Preset value of PID output is the relevant percentage of upper limiting frequency [F0.1.21].

When frequency inverter start to operate, first of all, it shall be sped up to the preset frequency of PID, and operate as closed-loop characteristics after running continually for a while at this point of frequency [F7.0.24].


Figure 7-56 Sketch of closed-loop corresponding sensor value


Figure 7-57 Relationship curve of feedback percentage and preset Frequency Operation

F7.0.25 Actual sensor value   (range) corresponding to $100 \%$   feedback	Setting range:0.01~100.00	Factory default: 1.00
F7.0.26 Actual sensor value   corresponding to 0\% feedback	Setting range:-100.00~100.00	Factory default: 0.0

This group of parameter determines the corresponding relationship between feedback percentage and
feedback physical quantity, which determines display values of monitoring parameters d0.1.36 and d0.1.37. Corresponding relationship curve is shown in Figure 7-57.

### 7.29 PROCESS PID MULTI-STAGE SETTING (GROUP F7.1)

F7.1.27~F7.1.33 Process PID   multi-stage preset	Setting range:-100.0~100.0\%	Factory default: 0.0

This group of parameter defines the set value of process PID multi-stage operation. Set value is the relevant percentage of process PID set value determined in F7.0.01.

Multi-stage operation of process PID can be flexibly realized with multifunction input terminal, please refer to function instruction of given terminal 1, 2, 3(28~30) of multi-stage process PID of terminal function F3.0.00~F3.0.08.

### 7.30 PROCESS PID SLEEPING FUNCTION (GROUP F7.2)

This function is valid when PID output conducts frequency order; Sketch is shown as below:


Figure 7-58 Sketch of PID sleeping function

### 7.31 REVOLUTION SETTING AND FEEDBACK (GROUP F8.0)



Figure 7-59 Closed-loop block diagram of revolution

This group of parameter is valid with VC and SVC modes.

F8.0.00	Revolution setting channel	Setting range: 0~12
Factory default: 0		

This parameter is used to define revolution setting channel. Selecting mode of revolution setting channel is similar with that of frequency setting source channel. Refer to instruction of F0.2.25 parameter.

## 0 : Set by frequency setting parameter (F0.1.16)

Revolution set value is obtained from transition of frequency set value selected by F0.1.16: revolution setting $=$ frequency set value*60/ pairs of motor polarity

## 1: Digital setting (F8.0.03)

Value of F8.0.03 is set as revolution set value, automatically preserved when outage.

## 2: Panel shuttle potentiometer setting

Revolution set value is given by revolving panel shuttle potentiometer.

## 3: Analog input Al1

## 4: Analog input Al2

## 5: Analog input AI3 (Bipolarity)

## 6: Frequency signal input (Fin)

Take the pulse signal input by pulse input port Fin as revolution set value.

## 7: MODBUS Fieldbus set value 1 (relative setting)

## 8: MODBUS Fieldbus set value 2 (absolute setting)

Note: Select revolution setting channels 3~7, upper and lower limiting parameters shall be correctly selected F8.0.01 and F8.0.02.

## 9: Virtual analog input SAI1

10: Virtual analog inputSAI2
11: Set value 1 of expansion communication module
12: Set value 2 of expansion communication module

F8.0.01 Minimum set signal   corresponding revolution	Setting range: 0~60*[F0.1.21] $/$   pairs of motor poles (rpm)	Factory default: 0
F8.0.02 Maximum set signal   corresponding revolution	Setting range: 0~60*[F0.1.21]/   pairs of motor poles (rpm)	Factory default: 1500

This parameter is used to set the relationship curve of set value and corresponding motor revolution when revolution channel is analog input port of this parameter.


Figure 7-60 Corresponding relation of revolution set value and motor revolution

F8.0.06 PG rotation direction	Setting range: 0,1	Factory default: 0

In the system of inductive vector controlling, frequency inverter output phase sequence (depending on the connection order between the motor and frequency inverter $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) and the connection order between pulses of encoder Phase A and Phase B should keep uniform. Or it can't function normally and cause the Fu. 020 fault or 0 speed shock when starting. Then it can be solved with modifying the parameter.
> Systems of tension control or hoisting equipment, etc, which may lead to motor shaft side-pulling, may result in Fu. 020 fault and at this moment please shield the protective function (FF.1.22 = \# 0 \# \#).

\section*{| F8.0.09 | Revolution check cycle | Setting range: 0000~0805 |
| :---: | :--- | :--- | Factory default: 0401}

When revolution feedback channel selects an encoder, the parameter sets speed check cycle.
The parameter should set smaller values; overlarge revolution check cycle may lead to unstable closed-loop running and decelerate response. When use larger check cycle for ensuring the exactness of measuring speed, please lower the proportionality factors F8.1.21, F8.1.25 (default parameter)of revolution closed-loop regulator and enlarge integral time constants F8.1.22, F8.1.26 moderately.

F8.0.10 Detection of loss of speed   detecting signal and action	Setting Range:0000~0021	Factory Default: 0001

Unit: Detection of loss of speed detecting signal
0: No detection
1: Detection and processing
Tens: Action after loss of speed detecting signal
0: Stop freely after fault alarming
1: Continue running by switching to SVC control mode and display alarm information.
2: DC band-type braking

F8.0.11 Missing detection and action of   speed detection signal	Setting range:   $0.01 \sim 5.00$ Sec.	Factory default: 2.00
F8.0.12 Wire breakage zero speed signal   level	Setting range: $\mathbf{0 \sim 2 0 . 0 \%}$	Factory default: 0.0

When set revolution is bigger than the wire breakage zero speed signal level (its set value is relative to the percentage of the largest set speed [F8.0.02]), while feedback speed is smaller than wire breakage zero speed signal level, and revolution of frequency inverter checks wire breakage protective function after keeping the set time of F8.0.11.

F8.0.13 Speed measuring loop wire   breakage detection flexibility	Setting range: 0.1~100.0	Factory default: 5.0

If speed measuring loop interference is great, it can enlarge [F8.0.13] to prevent wrong judgments from interference; otherwise decrease the set value to strengthen the response speed of the system to wire breakage check.

F8.0.14 Detection revolution filtering   time coefficient	Setting range: 1~50ms	Factory default: 0 ms

Filtering time coefficient of set revolution feedback in this parameter is available to all of the speed measuring modes (channels). When use encoder for speed measuring, the function is similar to check
cycle parameter (F8.0.09), therefore there is a need to set smaller values for the system of fast-speed response.

F8.0.15 The minimum revolution corresponding   to the feedback signal (not PG)	Setting range:   $0 \sim 30000 r p m$	Factory default: 0
F8.0.16 Corresponding revolution of the largest   feedback signal (non-PG)	Setting range:   $0 \sim 30000 \mathrm{rpm}$	Factory default: 1500

The parameter is used to set relations between revolution feedback signal (feedback channel 1~4) and the corresponding to the motor feedback.


Figure 7-61 Corresponding relation of revolution feedback value and motor revolution

## F8.0.17 Feedback revolution ratio <br> Setting Range: 0.010~50.000 <br> Factory Default: 1

This parameter is used to set the feedback revolution ratio, and the ratio equals to motor shaft speed: speed of the speed detecting shaft.

### 7.32 REVOLUTION CLOSED-LOOP PARAMETER (GROUP F8.1)

\section*{| F8.1.18 Controller parameter selection | Setting range: 0,1,2 | Factory default: 2 |
| :--- | :--- | :--- |}

## 0: Single PID parameter (the second group of parameters is effective by default)

1: Dual PID parameter (hysteresis switching)
2: Dual PID parameter (continuous switching)


Figure 7-62-A Double PID parameter (hysteresis switching)


Figure 7-62-B Double PID parameter (continuous switching)

F8.1.19 PID revolution   with parameter switching	Setting range: 0~[F8.1.20]	Factory default: 100
F8.1.20 PID parameter   switching upper limiting   revolution	Setting range: $[$ [F8.1.19]~60*[F0.1.21]   Motor pole pairs (rpm)	Factory default: 300

The parameters are effective in the condition of double PID parameter hysteresis switching; the first group parameter is effective when it is lower to switching lower revolution [F8.1.18]; the second group parameter is effective when it is higher than switching upper revolution [F8.1.19].

F8.1.21 Proportional gain 1   (ASR-P1)	Setting range: 0.05~1.00	Factory default: 0.90
F8.1.22 Integral time 1   (ASR-I1)	Setting range: $0.0,0.01 \sim 50.00$ Sec.	Factory default: 2.50
F8.1.23 Differential   coefficient 1(ASR-D1)	Setting range: $0.0,0.01 \sim 10.00$	Factory default: 0.0
F8.1.24 Differential output   filtering constant 1 (ASR-DT1)	Setting range: 0.10~5.00 Sec.	Factory default: 0.80
F8.1.25 Proportional gain 2   (ASR-P2)	Setting range: 0.05~1.00	Factory default: 5.00
F8.1.26 Integral time 2   (ASR-12)	Setting range: $0.0,0.01 \sim 50.00$ Sec.	Factory default: 2.00
F8.1.27 Differential   coefficient 2 (ASR-D2)	Setting range: 0.0, 0.01~10.00	Factory default: 0.0
F8.1.28 Differential output   filtering constant 2 (ASR-DT2)	Setting range:0.0, 0.10~10.00 Sec.	Factory default: 1.00

The parameters are applied to adjust proportional gain of speed adjuster, integral time and differential coefficient. Each parameter should be set as following:
1). Proportional gain $P$ : as value is bigger, the response id faster, however the stability of system is worse and overlarge gain can lead to revolution shock.
2). Integral time coefficient I : as value is greater, the response id faster, and the revolution over-adjusting is greater, while the stability is worse. In general, the parameters are direct proportional to system inertia. When inertia is great, the parameter also set with great value.
3). Differential coefficient D : it is the reverse to differential time constant; there is no need in general system and it should be set to be zero. Differential adjusting in reality is a kind of trend forecasting adjustment; the parameter set is bigger, the differential function is stronger. Proper differential set can fast the response speed, improve the stability, and it is used to the system with requirements of less inertia and fast response.
4). Differential output filtering time constant DT: differential output to the adjuster for a stage of inertia filtering time constant is generally set direct proportion to system inertia.

F8.1.29 Adjustor output upper   limit amplitude	Setting range: 0.0~300.0\%	Factory default: 250.0
F8.1.30 Adjuster output lower   limit amplitude	Setting range: -300.0~0.0\%	Factory default: -250.0

The parameter is applied to set adjuster output amplitude and limit system's transient forward and backward torque. Its set value is the percentage corresponding to rated torque.

Actual output torque is also limited by adjuster output lower limit amplitude [F1.4.47] and should pick up the lower among the two. When running acceleration and deceleration, it is mainly limited by electricity limit level.

### 7.33 PROTECTIVE PARAMETERS (GROUP F8.2)

F8.2.32 Excessive action of   revolution deviation (DEV)	Setting range: 0~3	Factory default: 0
F8.2.33 Over speed (OS)   detection action	Setting range: 0~3	Factory default: 1

The parameter is used to set excessive action of revolution deviation (DEV) and over speed (OS) detection action.

## 0 : No action

Inverter keeps on running without reporting any fault or warning message.

## 1: Alarm free stop

Inverter immediately blockades output and reports overlarge deviation of rotating speed of Fu. 018 (DEV)/Fu. 019 over-speed fault, while electric motor freely coasts to stop

## 2: Alarm deceleration stop

Inverter slows down to stop according to effective time of deceleration, and reports overlarge deviation of rotating speed (Fu.018) or over-speed fault (Fu.019).

## 3: Alarm continuing running

Inverter keeps on running, whereas reports overlarge deviation of rotating speed (aL.018) or over-speed warning (aL.019) at the same time.

F8.2.34 Detected value of   excessive revolution deviation   (DEV)	Setting range: 0.0~50.0\%	Factory default: $20.0 \%$
F8.2.35 Detection time of   excessive revolution deviation   (DEV)	Setting range: $0.0 \sim 10.00 \mathrm{Sec}$.	Factory default: 10.00

These parameters are used to set detecting value and time for overlarge deviation of rotating speed (DEV).
Provided that deviation of rotating speed is continuously greater than given DEV detecting value within given DEV detecting time [F8.2.35], then inverter shall be in line with the setting action of F8.2.32. Set value of F8.2.34 is corresponding to the percentage of upper limit frequency [F0.1.21].

F8.2.36 Detected value of over   speed (OS)	Setting range: 0.0~150.0\%	Factory default: $120.0 \%$
F8.2.37 Detection time of over   speed (OS)	Setting range: 0.0~2.00Sec.	Factory default: 0.10

These parameters are used to set detecting value and time of over-speed (OS).
Provided that feedback rotating speed is continuously faster than given OS detecting value within given OS detecting time [F8.2.37], then inverter shall be in line with the setting action of F8.2.33. Set value of F8.2.36 is corresponding to the percentage of upper limit frequency [F0.1.21].

### 7.34 TORQUE CONTROL (GROUP F8.3)

## F8.3.40 Selection of torque command channel $\quad$ Setting range:0~14 $\quad$ Factory default: 0

## 0: Digital setting (F8.3.41)

Take the set value of F8.3.41 as given value of torque, and conduct power failure storage.

## 1: Panel shuttle potentiometer setting

Set value of torque is given by rotational shuttle potentiometer

## 2: Analog input Al1

Al1 input voltage value of $\mathbf{0 \sim 1 0 V}$ is corresponding to $\mathbf{0 \sim 3 0 0 \%}$ of rated torque

## 3: Analog input Al2

Al2 input current value of $\mathbf{4 \sim 2 0 m A}$ is corresponding to $\mathbf{0 \sim 3 0 0 \%}$ of rated torque

## 4: Analog input AI3

AI3 input voltage value of $\mathbf{- 1 0 \sim 1 0 V}$ are corresponding to $\mathbf{0 \sim 3 0 0 \%}$ of rated torque

## 5: Analog input AI3 (bipolarity)

Al3 input voltage value of $\mathbf{- 1 0} \mathbf{\sim 1 0 V}$ is corresponding to $\mathbf{- 3 0 0 \%} \sim \mathbf{3 0 0 \%}$ of rated torque; positive and negative input of AI3 are corresponding to positive and negative instruction value of torque.

## 6: Frequency signal input (Fin)

Maximum value of input frequency of Fin terminal is corresponding to $\mathbf{3 0 0 \%}$ of rated torque.

## 7: Process PID output

For process PID output that given as torque instruction, F7.0.00 parameter needs to be set as \#1\#\# for matching.

## 8: Compensation PID output

For compensation PID output that given as torque instruction, F9.0.00 parameter needs to be set as \#1\#\# for matching.

## 9: MODBUS Fieldbus set value 1 (relative set value)

Current torque instruction of inverter is set by principal computer through built-in standard RS485 communication interface of inverter.

10: MODBUS Fieldbus set value 2 (absolute set value)
11: Virtual analog input SAI1
12: Virtual analog input SAI2
13: Set value 1 of expansion communication module 1
14: Set value 2 of expansion communication module 2

F8.3.41	Torque digital setting	Setting range: $\mathbf{- 3 0 0 \sim 3 0 0 \%}$	Factory default: 0.0

Its set value, the setting with symbols (direction), is corresponding to the percentage of rated torque; actual given direction of torque is "Exclusive OR" of control command direction and set value direction.

Refer to the following figure for the structure of compensation PID and functions of each functional parameter：


Figure 7－63 Schematic block of compensation PID

### 7.35 COMPENSATION PID (1ms CONTROL CYCLE) (GROUP F9.0)

F9.0.09 Analog input quantity   corresponding to 0\% set value	Setting range: 0.0V~[F9.0.10] /   AI2: $0.0 \mathrm{~mA} \sim[\mathrm{~F} 9.0 .10]$	Factory default: 0.0
F9.0.10 Analog input quantity   corresponding to $100 \%$ set value	Setting range: $[\mathrm{F9.0.09]} \sim 10.00 \mathrm{~V}$   IAI2: $[F 9.0 .09] \sim 20.00 \mathrm{~mA}$	Factory default:10.00

When the compensation PID setting source channel selects the analog channel input, this group of parameters can be used to modify the correspondence relationship between the compensation PID set value and the analog pot. The correspondence relationship is shown in Figure 7-64.

F9.0.13 Feedback input   corresponding to 0\% feedback	Setting range: $0.0 \mathrm{~V} \sim[\mathrm{F9.0.14]} /$   AI2: $0.0 \mathrm{~mA} \sim[F 9.0 .14]$	Factory default: 0.0
F9.0.14 Feedback input   corresponding to $100 \%$ feedback	Setting range:[F9.0.13]~10.00V   IAI2: $[$ F9.0.13] $\sim 20.00 \mathrm{~mA}$	Factory default: 10.00

This group of parameters can be used to modify the correspondence relationship between the compensation PID feedback value and the analogy port. The correspondence relationship is shown in Figure 7-65.


Figure 7-64 Sketch of compensation PID set value definition


Figure 7-65 Sketch of compensation PID feedback value definition

### 7.36 PARAMETER SELECTION OF COMPENSATION PID CONTROLLER (GROUP F9.1)

There are 4 Groups of compensation PID controller parameters, and their switching means are shown in Figure 7-66 ([9.1.21=0023]):


Figure 7-66 Sketch of compensation PID parameter switching

### 7.37 MODBUS FIELDBUS (STANDARD EXPANSION CARD CONFIGURATION) (GROUP FA.0)

| FA.0.02 | The inverter station address | Setting range: 0~247 |
| :--- | :--- | :--- | Factory default: $\mathbf{1}$

This parameter is used to set the address of the local inverter in the case of serial port communication. It is only effective when the inverter is a slave one. During communication, the local device only receives commands for the data frames consistent with the address of this device, and then sends back response frames.


## FA.0.03 Local inverter response delay of

Setting range: 0~1000ms
Factory default: 5ms
The response delay of the inverter refers to the waiting time since the inverter serial port has received and explained the command sent from the slave device till the response frames are sent.

| FA. 0.04 <br> time | Communication failure judging | Setting range: <br> $0.01 \sim 10.00 \mathrm{Sec}$. |
| :--- | :--- | :--- | Factory default: 1.00

If the local inverter has not received correct data signal beyond the time interval defined by this parameter, then the communication is judged to be failed for the local inverter. The inverter will report Fu. 071 Fault, and will act as set by FA.0.05.

| FA.0.05 <br> failure | Action after communication | Setting range: 0~1 |
| :--- | :--- | :--- | Factory default: 0 $\quad$|  |
| :--- |

0: Deceleration stop
1: Run according to the command received at last

### 7.38 MAPPING PARAMETER ACCESS (GROUP FA.1)

FA.1.08~FA.1.13 Mapping application   parameter 1~6 $(\mathrm{H})$	Setting range:   F0.00~FF.55	Factory default:   F0.29F0.32
FA.1.14~FA.1.23 Mapping status   parameter 1~10 $(\mathrm{H})$	Setting range:   d0.00~d1.49	Factory default:   d0.00 d0.09

When A510 series inverter makes access to functional parameters or monitoring parameters via the buss, corresponding address can be predicted directly with the functional code. However, when it is needed to access multiple functional parameters or monitoring parameters with discontinuous address, multipleframe data are needed in this method.

The mapping parameter access is actually a needle access mode. When accessing (reading or writing) several functional parameters or status parameters with discontinuous address, these parameters can be mapped into an area with continuous address (bus-control parameter area) for accessing.

See the following table for the bus-control parameters of A510 frequency inverter.

Register Name	Access   address	Remarks
Control word	$0 \times 1300$	Can be read as per the loops (1~16)
Set value 1	$0 \times 1301$	Setting of relative values
Set value 2	$0 \times 1302$	Setting of absolute values
Mapping application parameter 1	$0 \times 1303$	The access parameter is set by FA.1.08.
Mapping application parameter 2	$0 \times 1304$	The access parameter is set by FA.1.09.
Mapping application parameter 3	$0 \times 1305$	The access parameter is set by FA.1.10
Mapping application parameter 4	$0 \times 1306$	The access parameter is set by FA.1.11.
Mapping application parameter 5	$0 \times 1307$	The access parameter is set by FA.1.12.
Mapping application parameter 6	$0 \times 1308$	The access parameter is set by FA.1.13.
Status word	$0 \times 1309$	Can be read as per the discrete quantity (1~16)
Mapping status parameter 1	$0 \times 130$ A	The access parameter is set by FA.1.14.
Mapping status parameter 2	$0 \times 130 B$	The access parameter is set by FA.1.15.
Mapping status parameter 3	$0 \times 130 \mathrm{C}$	The access parameter is set by FA.1.16.
Mapping status parameter 4	$0 \times 130 \mathrm{D}$	The access parameter is set by FA.1.17.
Mapping status parameter 5	$0 \times 130 E$	The access parameter is set by FA.1.18.
Mapping status parameter 6	$0 \times 130 F$	The access parameter is set by FA.1.19.
Mapping status parameter 7	$0 \times 1310$	The access parameter is set by FA.1.20.
Mapping status parameter 8	$0 \times 1311$	The access parameter is set by FA.1.21.
Mapping status parameter 9	$0 \times 1312$	The access parameter is set by FA.1.22.
Mapping status parameter 10	$0 \times 1313$	The access parameter is set by FA.1.23.

The mapping parameters are determined by FA. 1 Group of parameters.
For example, in one frame of standard MODBUS protocol data, it's impossible to read the status parameters $\mathbf{d 0 . 0 . 0 2}, \mathrm{d} 0.0 .05, \mathrm{~d} 1.0 .01$ and $\mathbf{d 1 . 1 . 3 1}$ and status word once and for all with a common method. To map status parameters into the bus-controlled parameter area with continuous address, set with the following method:
[FA.1.14]=d0.02 [FA.1.15]=d0.05
[FA.1.16]=d1.01 [FA.1.17]=d1.31
Then it just needs to read the data in the continuous address 0x130A ~ 0x130D.

# 7.39 COMMUNICATION LINKAGE SYNCHRONOUS CONTROL (GROUP FA.2) 

FA.2.26 Set the correction coefficient of the unit via communication

## Setting range:

 0.010~10.000Factory default: 1.000
During linkage control, this parameter defines the proportion between the output frequency of the master machine and the slave machine; the parameter of the master inverter does not function.
FA.2.27 Fine adjustment source for linkage
proportion coefficient

Setting range: 0~3
Factory default: 0

## 0: No fine adjustment

If the fine adjustment source for linkage proportion coefficient is void, then: Slave frequency command = master frequency command * [FA.2.26] of the salve machine.

## 1: Analog input Al1

If Al1 is selected for the fine adjustment source for linkage proportion coefficient, then: Slave frequency command $=$ master frequency command * [FA.2.26] of the salve machine *AI1/AI1 maximum.

## 2: Analog input Al2

If Al2 is selected for the fine adjustment source for linkage proportion coefficient, then: Slave frequency command $=$ master frequency command * [FA.2.26] of the salve machine *AI2IAI2 maximum.

## 3: Analog input Al3

If Al3 is selected for the fine adjustment source for linkage proportion coefficient, then: Slave frequency command $=$ master frequency command * [FA.2.26] of the salve machine *AI3/AI3 maximum.

## FA.2.28 Slave machine offset frequency Irevolution

Setting range: 0, 1, 2
Factory default: 0

This parameter of the master inverter does not function, and it is used to select the auxiliary frequency of the slave machine:

Actual output frequency of the salve machine=master machine frequency command * slave machine linkage proportion (including fine adjustment) + offset frequency

## 0 : No offset

No offset frequency/revolution; The frequency set value of the slave machine is determined by the frequency command of the master device and the setting of FA.2.26 and FA.2.27.

## 1: Determined by frequency setting source 1

The frequency set value of the slave machine frequency setting source 1 is regarded as the offset frequency/revolution of the slave machine.

## 2: Determined by frequency setting source 2

The frequency set value of the slave machine frequency setting source 2 is regarded as the offset frequency/revolution of the slave machine.

FA.2.29 Linkage balance function	Setting range: 0~4	Factory default: 0

## 0: Void

## 1: Current balance

With reference to the load current of the master device, each slave device will automatically conduct fine adjustment to the output of local device so as to keep consistency with the master device's current.

## 2. Torque balance

With reference to the torque of the master device, each slave device will automatically conduct fine adjustment to the output of local device so as to keep consistency with the master device's torque.

## 3: Power balance

With reference to the power of the master device, each slave device will automatically conduct fine adjustment to the output of local device so as to keep consistency with the master device's torque.

## 4: Position synchronous balance

In the multi-device linkage running system with PG closed-loop vector control, the position synchronous balance function can be adopted to eliminate accumulative displacement deviation caused by slight deviation of each drive's revolution. In this mode, all the motor's PG speed measuring devices which are subject to linkage running shall have the same parameters (pulse per revolution).

The position synchronous balance can only allow for correction of slight revolution deviation, and the revolution synchronous balance function should be well adjusted before use of this function.

When the linkage balancing function is effective, this parameter is used to set the adjusting gain output by this device, and it is only effective for the slave device. The higher the gain is, the higher the amplitude of the self-balancing adjustment is.

### 7.40 EXPANSION MULTIFUNCTIONAL INPUT TERMINAL (GROUP FB.0)

```
Fb.0.00~Fb.0.07 Expansion
multifunctional input terminal EDI1~8
```

Setting Range: 0~96
Factory default: 0

FF group parameters contain special and internal functional parameters, and their setting and initialization is limited. This parameter is used to set the user's authority for FF parameters.

Fb.0.08 Filtering time of expansion   multifunctional terminal	Setting Range: 1~50ms	Factory default: 5 ms
Fb.0.09 Effective level of expansion   multifunctional input terminal (H)	Setting Range: 0000~00FF	Factory default: 0000

### 7.41 EXPANSION MULTIFUNCTIONAL INPUT TERMINAL (GROUP FB.1)

Fb.0.10~ Fb.0.13 Expansion   multifunctional output EDO1~EDO4	Setting Range: 0~62	Factory default: 0
Fb.0.14~ Fb.0.17 Expansion relay   output ERO1~ERO4	Setting Range: 0~62	Factory default: 0

### 7.42 SERVO CONTROL AND SCALE POSITIONING (GROUP FB.2)

Fb.2.18 Automatic shift frequency	Setting range: $\mathbf{0 \sim 5 . 0 0 \mathrm { Hz }}$	Factory default: 1.00

For equipments with mechanical speed change gear like the spindle, during mechanical shifting, shift jogging can be adopted to avoid mechanical dead. This group of parameters defines the running parameters for shift jogging.

Fb. 2.19 Automatic shift switching   cycle	Setting Range:   $0.10 \sim 2.00$ Sec.	Factory default: 0.3
Fb.2.20 Zero frequency torque holdup   (DC bind-type brake preferred)	Setting range: 0~3	Factory default: 0
Fb.2.21 Position gain 1 (positioning   gain )	Setting range: 0.10~100.00	Factory default: 1.00

0: Void
1: Bind-type brake torque effective
2: Position locking (PG feedback VC mode)
3: Locked to designated stop angle
When the equipment stops, it will always tops at the angel preset by parameter $\mathbf{F b}$.2.45, which is convenient for operating equipment with requirement of fixed operation orientation for stop.

In the running mode of VIF and SVC, the function of zero frequency torque holdup is similar with that of the DC braking function. It cannot guarantee that the motor shaft is absolutely static when it is dragged by the load, and the position gain is void.

In the PG feedback VC control mode, if the zero frequency torque holdup $\mathbf{2}$ is selected, the drive will automatically memorize the shaft position at stop, and shift to the position serve running mode, so as to guarantee that the shaft will not rotate even under the load dragging. The higher the position gain is, the stronger the locking torque is.

Fb.2.22 PG speed shaft propulsion   distance per revolution	Setting range:   $0.001 \sim 50.000 \mathrm{~mm}$	Factory default: 0.500

This parameter is set the liner displacement of the transmission structure for each revolution of PG speed shaft. The accumulative displacement is shown in the monitoring parameter d1.2.20.

| Fb.2.23 Servo control function | Setting range:0000~0012 | Factory default: 0000 |
| :--- | :--- | :--- | :--- |

The unit: Function selection
0: Void - servo control void, and running in the speed or torque control mode.
1: Effective - must be in the closed-loop vector control mode.

## 2: External terminal selection (Function No. 69).

The closed-loop vector control mode must be selected for this function, and the selection will not be effective until the inverter has completely stopped.

## Tens: Action mode

0 : Common mode
1: Spindle orientation

Fb. 2.24 Position setting source in   common mode	Setting range: 0~5	Factory default: 1
Fb. 2.25 Position digit setting (lower)	Setting range: 0~65535	Factory default: 0
Fb. 2.26 Position digit setting (upper)	Setting range: 0~5000	Factory default: 0

This group of parameters is used to define the position command source in the mode of common serve control.

When the analog setting is used to set the position, the maximum analog input is corresponding to 5000 pulse commands.

When digital setting ([Fb.2.24] = 2 ) is selected as the position setting source, Fb.2.25 and Fb.2.26 are used to set the command position.

Fb. 2.27	Electronic gear (numerator)	Setting range:0~65535	Factory default: 1000
Fb. 2.28	Electronic gear (denominator)	Setting range:0~65535	Factory default: 1000

The electronic gear is used to transform the command pulse to the amount of movement. If the encoder is set to a (pulse per revolution), the displacement per revolution of the motor is $B$, and the pulse command unit is $C$, then the electronic gear can be calculated as below: Electronic gear $=4 \mathrm{AC} / \mathrm{B}$

The numerator and denominator can be figured out after approximating the common divider.
For example, the encoder of a certain transmission is 1000 lines ( $A=1000$ ), and motor displacement per revolution is $2 \mathrm{~mm}(B=2)$, and the pulse command unit is $1 \mathrm{um}(C=0.001 \mathrm{~m})$, then the electronic gear is $4 A C / B=4000^{*} 0.001 / 2=2 / 1$. Hence, the numerator and the denominator for the electronic gear is respectively 2 and 1 .

| Fb. 2.30 | Position gain 2 | Setting range: 0.01~100.00 |
| :--- | :--- | :--- | Factory default: 1.00

In the position gain selection mode, the position gain 1 ( $\mathbf{F b} .2 .21$ ) is effective when the gain ([Fb.2.31] =3) is selected according to the position deviation, and the position deviation is lower than the set pulse value (Fb.2.32). Otherwise, the position gain 2 (Fb. 2.30) will be effective.

Fb.2.33 Speed feed-forward gain	Setting range :   $0.0 \sim 200.0(\%)$	Factory default:100.0

The higher the position speed feed-forward gain is set, the Faster the tracking speed is. However, excessive set value may worsen the stability.

Fb.2.34 Revolution limiting mode in the mode of common servo mode

Setting Range: 0~1
Factory default: 0
0 : Limited by upper frequency
Automatically calculate current operation speed according to the position deviation, preset acceleration and deceleration time (simple information of load inertia) and limited by the upper frequency.

## 1: Limited by the frequency setting channel

Automatically calculate the current operation speed according to the position deviation, preset acceleration and deceleration time (simple information of load inertia), and limited by the value of frequency setting channel. This way can help avoid sudden acceleration during position control occurred due to insufficient speed restraining conditions.

| Fb. 2.36 <br> mode | Spindle orientation | Setting range: 0000~0100 |
| :--- | :--- | :--- | Factory default: 0000

The unit: Selection of positioning zero point reference signals

## 0: Z Pulse positioning

Z pulse is used to be the reference signal for spindle 0 point (any offset angle can be set according to usual practice). In this mode, the encoder should be installed on the spindle.

## 1: Photoelectric switch positioning

The photo electricity (or other sensor signal) on the spindle is used as the zero point reference signal.

## Tens: Positioning command

## 0: External terminal selection

The value preset by the external functional terminal (Function No. 72~74) selection is used as the current positioning command. It is required to correctly set the transmission ratio (Fb.2.46) of the spindle, and when the encoder is installed on the spindle, this vale is set to be 1.000 .

## 1: Pulse command setting

The positioning angle will be determined according to received command pulse. In this mode, it is applicable to adjust the transmission gear with the electronic gear or directly change the command pulse number. Please note that the direction of command pulse should be consistent with the spindle rotation direction, and the spindle transmission ratio (Fb.2.46) should be correctly set.

Fb. 2.37 Spindle orientation   frequency/speed	Setting range: $0.01 \sim 100.00 \mathrm{~Hz}$	Factory default: 5.00 Hz

To define the maximum search frequency at the time of spindle positioning.

Fb. 2.38~ Fb. 2.44 Spindle   positioning angle 1~7	Setting range: 0~359.9	Factory default: $0.0 \sim 315.0$
Fb. 2.45 Spindle stop angle	Setting range: $0 \sim 359.9$	Factory default: 0.0

Setting for multi-stage spindle positioning angle and stop angle.

| Fb. 2.46 <br> ratio | Spindle transmission | Setting range:0.010~50.000 |
| :--- | :--- | :--- | Factory default:1.000 |  |
| :--- |

When the encoder is not directly installed on the spindle, this parameter needs need to be set to achieve correct spindle orientation. This parameter only functions for the spindle orientation function.

Spindle transmission ratio $=$ revolution of the speed shaft: spindle revolution.

### 7.43 VIRTUAL INPUT AND OUTPUT (GROUP FF.0)

FF.0.00 FF configuration   parameter locking function (H)	Setting range: 0000~1001	Factory default: 0000

FF group parameters include special and internal function parameters, and their setting and initialization are confined. This group of parameters is used to set the user's authority for operating FF parameters.

```
FF.0.01~FF.0.08 Definition of
virtual output node (SDO1~ SDO8)
```

Setting range: 0~62
Factory default: 0

The virtual output nodes SDO1~SDO8 are functionally the same as the multifunctional output terminals DO1~DO3, but do not output any signal. They are directly connected in the controller of the inverter to the virtual input nodes SDI1~SDI8 one to one.

Using virtual nodes can not only help simplify wiring but can also avoid interference. The function of SDO1~SDO8 can be defined by setting the value of FF.0.01~FF.0.08. Please refer to Table 2 (Comparison Table for Variables of Multifunctional Output Terminals (DO/EDOISDO) for the variables corresponding to the set value.

FF.0.09~FF.0.016 $\quad$ Definition of   virtual input node (SDI1~ SDI8)	Setting range: 0~96	Factory default: 0

The virtual input nodes SDI1~SDI8 are functionally the same as the multifunctional input terminals DI1~DI9. But there are no actual physical input nodes. They are connected to the virtual output SDO1~SDO8 one to one, and are directly taken from the virtual output signal.

The virtual input nodes SDI1~SDI8 are functionally programmable, and their function can be defined by setting the values of FF.0.09~FF.0.16. Please refer to Table 1 (Comparison table for functions of multifunctional terminals (DI/EDI/SDI))for functions corresponding to the set value.

FF.0.17 Virtual output - input   connection polarity	Setting range: 0000~1111	Factory default: 0000
FF.0.18 Virtual output - input   connection polarity	Setting range: 0000~1111	Factory default: 0000

The parameters are used to set the connection logic status of the virtual output nodes SDO1~SDO8 and virtual input nodes SDI1~SDI8. When it is set to be reverse polarity connection, the virtual output signal will be negated before being inputted to the virtual input port, as shown in Figure 7-67.


Figure 7-67 Block diagram of virtual output - input

### 7.44 PROTECTING FUNCTION CONFIGURATION PARAMETERS (GROUP FF.1)

This group of parameters is used to define if the protecting function needs to be activated or not. Generally no modification is required.

### 7.45 CORRECTION PARAMETERS (GROUP FF.2)

FF.2.25 Al1 Zero offset   adjustment	Setting range: -0.500~0.500V	Factory default: 0.0
FF.2.26 Al1 gain correction	Setting range: 0.950~1.050	Factory default:1.000

This group of parameters is used to make fine adjustment to Al1 zero point and Al1. The relationship before and after adjustment:

Al1 input value= Al1 gain correction* Al1 value before adjustment + Al1 zero offset.

FF.2.27 4mA deviation   adjustment for Al2	Setting range:-0.500~0.500mA	Factory default: 0.0
FF.2.28 Al2 gain correction	Setting range: $0.950 \sim 1.050$	Factory default: 1.000
FF.2.29 AI3 Zero offset   adjustment	Setting range: $-0.500 \sim 0.500 \mathrm{~V}$	Factory default: 0.0
FF.2.30 AI3 gain correction	Setting range: $0.950 \sim 1.050$	Factory default: 1.000
FF.2.31 AO1 zero offset   correction	Setting range: $-0.500 \sim 0.500 \mathrm{~V}$	Factory default: 0.0
FF.2.32 AO1 gain correction	Setting range: $0.950 \sim 1.050$	Factory default: 1.000
FF.2.33 AO2zero offset   correction	Setting range: $-0.500 \sim 0.500 \mathrm{~V}$	Factory default: 0.0
FF.2.34 AO2 gain correction	Setting range: $0.950 \sim 1.050$	Factory default: 1.000

The correction principle for each analog input/output port is the same as Al1. The relationship curves with zero offset adjustment and gain correction are respectively as below. Generally, users do not need to set these parameters.


Figure 7-68-A
Al1 zero offset correction curve


Figure 7-68-B
Al1 Gain correction curve


Figure 7-69-A
Al2 Zero offset correction curve


Figure 7-70-A
Al3 Zero offset correction curve


Figure 7-69-B
AI2 Gain correction curve


Figure 7-70-B
Al3 Gain correction curve

## FF.2.35 Under voltage protection action level

This parameter sets the allowable lower limiting voltage at the DC side during normal operation of the inverter. For some occasions with lower power grid, it is applicable to appropriately reduce the under voltage protection level, so as to ensure normal operation of the inverter.


The set value for this parameter [FF.2.35] must be no more than the under voltage adjustment action level [F1.4.45].

FF.2.36 Correction coefficient of   DC side voltage detection value	Setting range: 0.950~1.050	Factory default: 1.000

When the actual bus of the inverter is deviated from the value of the DC side voltage monitoring parameter d0.0.07, it is applicable to set this parameter combined with the correction of potentiometer in the bus voltage detection circuit.

### 7.46 SPECIAL FUNCTIONAL PARAMETERS (GROUP FF.3)

The modification of this group of parameters should be conducted under the guidance of professionals, and no modification is needed generally.

### 7.47 OTHER CONFIGURATION PARAMETERS (GROUP FF.4)

FF.4.41 Cooling Fan control	Setting range: 0000~0111	Factory default: 0101

The unit: Soft start function (effective for model 4T0370 below)
This function helps effectively reducing the instantaneous power required for starting the Fan, hence guarantee stable and reliable operation of the switch power supply.

Tens: Air volume auto adjustment (effective for model 4 T0370 below)
The revolution of the cooling Fan can be automatically adjusted according to the ambient temperature and operation status of the inverter, so as to maximize service life of the cooling Fan.

## Hundreds: Start time

## 0 : Start immediately after power-on

The fan will run according to the settings in the unit and ten's digit of this parameter immediately after the inverter is powered on.

## 1: Start during running

The fan will run according to the settings in the unit and ten's digit of this parameter after the inverter is powered on and has received the running command.

FF.4.42 Operating panel   control options	Setting range: 0000~2001	Factory default: 0000

Kilobit: Panel control selection (except STOP key)

## 0 : Standard panel interFace control

The control command can only be given through the standard operating panel, and external monitoring panel can be connected via RS485.
1: RS485 port external panel control
The control command can only be given via RS485 port, and the standard panel is only used for monitoring.

## 2: Multifunctional terminal switching

The master control panel is selected by the multifunctional input terminal (Function No. 40) and the terminal function is set with the parameters $\mathbf{F 3 . 0 . 0 0 \sim ~ F 3 . 0 . 0 8}$.

FF.4.43 Special function   configuration	Setting range: 0000~1111	Factory default: 0001

The unit: Motor parameter identification auto-start

## 0 : Forbidden

1: Permitted
After modifying the motor nameplate parameters, the inverter will automatically set static self identification
of motor parameters once.
Tens: Voltage vector composition mode
0 : Three-phase composition

## 1: Two-phase composition

Another modulation method for space voltage vector. This method can help appropriately reduce heating of the inverter, but audio noise may somewhat increase.

## Hundred: Small pulse shielding

0: Void
1: Effective
Kilobit: SVC Revolution identification mode
0: SVC Revolution identification mode
1: SVC Revolution identification mode

## 8. WARNING, ALARM DIAGNOSIS AND COUNTER MEASURES

When the frequency inverter sends warning signals, the auxiliary display column displays warning code. Some warnings have no influence on the operation of the inverter. Those warnings which may influence the operation of the frequency inverter should be eliminated as much as possible; otherwise, more serious failures may be caused. When the frequency inverter fails to alarm, its protective function will act and display fault code and the inverter will stop outputting with the motor freely sliding and shutting down.

### 8.1 TROUBLESHOOTING WITH WARNING OR ALARM DISPLAY

### 8.1.1 ALARM DISPLAY AND TROUBLESHOOTING

Fault code	Fault description	Possible causes	Solutions
Fu. 001	Over current during acceleration	1. The acceleration time is too short.   2. V/F curve or torque boosting is set improperly.   3. After it is re-energized upon transient stop, the rotating motor is restarted.   4. The frequency inverter has smaller capacity.   5. The encoder is faulty or disconnected during the operation and acceleration with PG	1. Adjust acceleration time   2. Adjust V/F curve or torque boosting parameters   3. It is valid to set [F0.4.38] as 1; Recover operation in the mode of deceleration and restart after power off.   4. Select frequency inverter with matched capacity level   5. Inspect encoder and its connection
Fu. 002	Over current during deceleration	1. The deceleration time is too short.   2. The potential energy load or load inertia is too large.   3. The frequency inverter has smaller capacity   4. The encoder is faulty or disconnected during the operation and deceleration with PG	1. Adjust deceleration time   2. Connect braking resistor or unit externally   3. Select frequency inverter with matched capacity level   4. Inspect encoder and its connection
Fu. 003	Over current during operation	1. The load changes suddenly   2. The grid has over-low voltage.   3. The frequency inverter has smaller capacity.   4. The load is overweight.   5. After it is re-energized upon transient stop, the rotating motor is restarted.   6. The three-phase output line of the frequency inverter has interphase short circuit or phase line short circuit to ground.   7. The encoder is faulty or disconnected during operation.	1. Reduce load sudden change   2. Inspect voltage of power supply   3. Select frequency inverter with matched capacity level   4. Inspect load or replace a frequency inverter with larger capacity   5. It is valid to set [F0.4.38] as 1; recover operation in the mode of deceleration and restart after power off.   6. Eliminate short circuit failure.   7. Inspect the connection of encoder
Fu. 004	Over voltage during acceleration	1. The input voltage is abnormal   2. The rotating speed closed loop parameters are set improperly during vector control operation   3. Start the rotating motor (without rotating speed tracking)	1. Inspect input power supply   2. Adjust rotating speed closed loop parameters, please refer to the description of F8.1 parameter set   3. It is valid to set [F0.4.38] as 1 ; Recover operation in the mode of deceleration and restart after power off.


Fault code	Fault description	Possible causes	Solutions
Fu. 005	Over voltage during deceleration	1. The deceleration period is too short.   2. The load potential energy or inertia is too large   3. The input voltage is abnormal	1. Adjust deceleration time   2. Connect braking resistor or unit externally   3. Inspect input power supply
Fu. 006	Over voltage during operation	1. The input voltage is abnormal.   2. The parameters of regulator are set improperly during vector control operation	1. Install input reactor   2. For adjusting parameters of regulator, please refer to the description of parameter set in F8.1
Fu. 007	Over voltage when shutting down	The voltage of the power supply is abnormal	Inspect voltage of power supply
Fu. 008	Under voltage during operation (can be shielded)	1. The voltage of the power supply is abnormal   2. Large load is started in the grid.	1. Inspect voltage of power supply   2. Supply power separately
Fu. 009	Drive protection action	The major loop is abnormal	Seek for manufacturer's support
Fu. 010	Output grounding (can be shielded)	The motor or the motor cable is detected to be abnormally Grounded.	Check and eliminate grounding fault.
Fu. 011	Electromagnetic interference	False operation caused by the surrounding electromagnetic interference.	Seek for technical service
Fu. 012	Overload of frequency inverter	1. The load is overweight   2. The acceleration period is too short.   3. The booster voltage of torque is too high or V/F curve is set improperly   4. Acceleration torque is set too high   5. The rotating speed tracking restart function is not activated, and rotating motor is directly started.   6. In closed loop vector mode, the direction of pulse of the encoder is opposite to that of the motor	1. Reduce load or replace a frequency inverter with larger capacity   2. Prolong acceleration time   3. Reduce torque lifting voltage and adjust V/F curve   4. Reduce the value of [F1.4.39], [F1.4.40]   5. Set the starting/stopping mode ([F0.4.38]) as rotating speed tracking restarting mode.   6. Check whether the encoder is reverse
Fu. 013	Overload protection action of motor	1. V/F curve is set improperly   2. The grid has over-low voltage.   3. The motor is operated for long time with low speed and large load.   4. The overload protection coefficient of the motor is too small.   5. Locked-rotor operation of motor or overlarge load.   6. In closed loop vector mode, the direction of pulse of the encoder is opposite to that of the motor.	1. Adjust V/F curve   2. Inspect the input voltage of grid   3. Select special motor for frequency conversion for long-term low speed operation   4. Increase the overload protection coefficient of the motor ([F2.0.25])   5. Adjust the working conditions of the load or select frequency inverter with matched capacity level   6. Adjust the connection of encoder or change the function setting for direction of the encoder
Fu. 014	Overheating of frequency inverter (sensor 1)	1. The air duct is blocked   2. The ambient temperature is over high   3. The fan is abnormal   4. The temperature detecting circuit or power module is abnormal	1.Clean the air duct or improve ventilation conditions   2. Improve ventilation conditions and reduce carrier frequency   3. Replace the fan   4. Seek for the manufacturer's support


Fault code	Fault description	Possible causes	Solutions
Fu. 015	Overheating of frequency inverter (sensor 2)	Same with above.	Same with above.
Fu. 016	Overheating of frequency inverter (sensor 3)	Same with above.	Same with above.
Fu. 017	External equipment is faulty or the panel has forced stoppage	The external equipment of the frequency inverter is faulty, the input terminal has signal input	Inspect signal source and relevant equipment and find the root leading to the stoppage of the panel.
Fu. 018	Excessive protection of rotating speed deviation (DEV)	1. The load is too large.   2. The acceleration time is too short.   3. The load is locked.   4. The detection value ([F8.2.34]) and time ([F8.2.35]) for DEV is set improperly.	1. Reduce load   2. Prolong acceleration and deceleration time.   3. Confirm the mechanical system of the load   4. Reset the detection value ([F8.2.34]) and time ([F8.2.35]) for DEV.
Fu. 019	Over speed failure (OS)	1. Overshoot or undershoot is occurred.   2. The frequency is too high   3. The detection value ([F8.2.36]) and time ([F8.2.37]) for over speed is set improperly.	1. Adjust the gain   2. Adjust the set value of frequency   3. Reset the set value of the detection value ([F8.2.36]) and time ([F8.2.37]) of OS.
Fu. 020	Reverse connection of A, B pulse of PG card	The encoder's feedback pulse connection order is inconsistent with the motor's rotation direction.	1. Change the connection order of A, B pulse,   2. Exchange any two wires from U, V, W   3. Modify the setting of parameter F8.0.06
Fu. 021	The master contactor is not actuated well.   Or the thyristor of major loop is not conducted.	1. The DC side master contactor in the frequency inverter is not actuated well.   2. The power supply voltage is unstable with frequent sudden change	1. Clean and Check the major loop contactor   2. Check the grid voltage.   3. Disable this protective function (FF.1.21)
Fu. 022	Internal data memory is faulty	1. There is intense noise around in the process of writing in function code data   2. The internal memory is damaged	1. Retry after reset   2. Seek for manufacturer's service
Fu. 023	$R$ phase input voltage loss (can be shielded)	1. Broken circuit of $R$ phase incoming line of the inverter.   2. Loosing of input R phase power wiring terminal   3. Excessive fluctuation of $R$ phase input voltage	
Fu. 024	S phase input voltage loss (can be shielded)	1. Broken circuit of $S$ phase incoming line of the inverter.   2. Loosing of input S phase power wiring terminal   3. Excessive fluctuation of $S$ phase input voltage	1. Eliminate peripheral faults.   2. Seek for manufacturer's support
Fu. 025	T phase input voltage loss (can be shielded	1. Broken circuit of T phase incoming line of the inverter.   2. Loosing of input T phase power wiring terminal   3. Excessive fluctuation of $T$ phase input voltage	


Fault code	Fault description	Possible causes	
	$\begin{array}{l}\text { The output current of U } \\ \text { phase is deficient/ } \\ \text { smaller The output } \\ \text { current of V phase is } \\ \text { deficient/ smaller } \\ \text { The output current of W } \\ \text { phase is deficient/ } \\ \text { smaller }\end{array}$	$\begin{array}{l}\text { 1. The lead from frequency inverter to } \\ \text { motor is disconnected. } \\ \text { 2. The driving or control panel of the } \\ \text { frequency inverter is faulty }\end{array}$	$\begin{array}{l}\text { 3. The three-phase winding of the } \\ \text { motor is faulty }\end{array}$
Fu.028	$\begin{array}{l}\text { 1. Eliminate peripheral failures } \\ \text { 2. Seek for manufacturer's } \\ \text { support }\end{array}$		
3. Eliminate the failure of motor			


Fault code	Fault description	Possible causes	Solutions
Fu. 047	PG feedback signal abnormal u, v, w	PG cards or spinning the UVW variable signal loss	Check that the signal cable or PG card is faulty
Fu. 048	Magnetic pole the initial rotor position error	Suitable for initial settings of the synchronous machine rotor pole position error	Identification of rotor position again, check the signal connection
Fu. 049	Z-exception signal identification	Parameter identification of synchronous machine is not detected correctly when $z$ signals	Check PG feedback cards and cabling
Fu. 051	$U$ phase current is detected faulty(sensor or circuit)	1. The current sensor or circuit is damaged   2. The auxiliary power supply is faulty   3. The control and driving panel are bad connected.	Seek for manufacturer's support
Fu. 052	$\checkmark$ phase current is detected faulty (sensor or circuit)	1. The current sensor or circuit is damaged   2. The auxiliary power supply is faulty   3. The control and driving panel are bad connected.	Seek for manufacturer's support
Fu. 053	Error of W phase current detection (sensor or circuit)	1. The current sensor or circuit is damaged.   2. The auxiliary power supply is faulty   3. The control and driving panel are bad connected.	Seek for manufacturer's support
Fu. 054	The temperature sensor 1 is faulty(can be shielded)	The temperature detecting circuit is abnormal	Seek for manufacturer's support
Fu. 055	The temperature sensor 2 is faulty(can be shielded)	The temperature detecting circuit is abnormal	Seek for manufacturer's support
Fu. 056	The temperature sensor 3 is faulty(can be shielded)	The temperature detecting circuit is abnormal	Seek for manufacturer's support
Fu. 067	Fault of functional expansion unit 1	The communication linkage of the functional expansion unit 1 is abnormally interrupted.	Check the expansion card 1 for connection
Fu. 068	Fault of functional expansion unit 2	The communication linkage of the functional expansion unit 2 is abnormally interrupted.	Check the expansion card 2 for connection
Fu. 071	Abnormal communication of the control board		
Fu. 072	The connection of accessories is abnormal		
Fu. 130	Dedicated fault code for expansion function		
Fu. 201	Conflicting parameter setting		Please contact the direct supplier
$\begin{gathered} \text { Fu. } 301 \\ \sim \\ \text { Fu. } 311 \end{gathered}$	Control panel is faulty		Seek for manufacturer's support

### 8.1.2 WARNING DISPLAY AND TROUBLESHOOTING

Display	Warnings	Can be shielded or not	Solutions other than shielding
aL. 003	Over high power supply voltage		Inspect input power supply
aL. 008	Lower input voltage (under voltage early warning)		Inspect input power supply
aL. 011	Bad electromagnetic environment		Improve working environment or seek for manufacturer's support
aL. 012	The load is overweight and protection maybe occurred.		Reduce load, or replace a frequency inverter with larger power
aL. 014	INV overheating early warning		Improve ventilation conditions and reduce carrier
aL. 018	Overlarge DEV		1. Reduce load   2. Prolong acceleration and deceleration time   3. Confirm mechanical system of load   4. Confirm the detection value ([F8.2.34]) and time ([F8.2.35]) for DEV
aL. 019	Over speed (OS)		1. Adjust frequency setting loop   2. Inspect the setting value of detection value [F8.2.36]) and time ([F8.2.37]) for OS
$\begin{aligned} & \text { aL. } 023 \\ & \text { aL. } 024 \\ & \text { aL. } 025 \end{aligned}$	Loss of $U$ phase input voltage Loss of V phase input voltage Loss of W phase input voltage		
aL. 026   aL. 027   aL. 028	The out put current of $U$ phase is deficient/smaller   The out put current of $V$ phase is deficient/smaller   The out put current of W phase is deficient/smaller	Can be shielded	Inspect the connecting wire between frequency inverter and motor or the winding of motor
aL. 031	The starting enabling signal is deficient		1. Inspect the enabling connection (42) in multifunctional input terminal and the status of the terminal (ON/OFF)   2. Inspect whether the starting enabling signal in bus command word is effective or not
aL. 032	Early warning of unbalanced three-phase input voltage	Can be shielded	Measure the input voltage of all the phases, install ACR and reduce imbalance rate among phases
aL. 036   aL. 037   aL. 038	Al1 input is disconnected Al2 input is disconnected Al3 input is disconnected		1. Inspect the connection of analog input signal   2. Inspect whether there're signals in the signal source
aL. 039	Fin input is disconnected		Seek for manufacturer's support
aL. 040	The rotating speed detecting loop is disconnected	Can be shielded	1. Inspect the connection of speed measuring module   2. Seek for manufacturer's support
aL. 041	No-load operation fails to identify the parameters of motor		
$\begin{aligned} & \text { aL. } 042 \\ & \text { aL. } 043 \\ & \text { aL. } 044 \end{aligned}$	The parameters of $U$ phase of motor is abnormal   The parameters of V phase of motor is abnormal   The parameters of W phase of motor is abnormal		Inspect whether the winding of motor is faulty
aL. 045	Over temperature of the motor		Long-term low-speed operation and selecting dedicated motor for the inverter.


Display	Warnings	Can be shielded or not	Solutions other than shielding
aL. 046	Breaking bounds of dynamic tracking of the magnetic pole position of the synchronous motor rotor		Check the PG feedback card and the connection
aL. 047	Loss of Z signal or abnormity of parameter identification		Check the PG feedback card and the connection
aL. 048	Excessive deviation of feedback UVW signal		Check the PG feedback card and the connection
aL. 049	The driving circuit is abnormal and unbalanced		Seek for manufacturer's support
aL. 050	Incorrect connection of the motor		
$\begin{aligned} & \text { aL. } 054 \\ & \text { aL. } 055 \\ & \text { aL. } 056 \end{aligned}$	The temperature sensor 1 is faulty The temperature sensor 2 is faulty The temperature sensor 3 is faulty	Can be shielded	1. Increase the action point for over temperature warning ([F5.4.46])   2. Replace the temperature sensor 1,2,3
aL. 058	The parameters can not be recovered in batch during operation		Seek for manufacturer's support
aL. 059	The numerical value when energized can not be recovered during operation		Seek for manufacturer's support
aL. 061	The connection between expanded communication module and master control board is interrupted abnormally		Seek for manufacturer's support
aL. 062	The function expansion unit 1 has a hardware conflict		1. The expansion unit selected is inappropriate and can not be used with such type of frequency inverter   2. The function expansion unit has a internal fault
aL. 063	The function expansion unit 2 has a hardware conflict		1. The expansion unit selected is inappropriate and can not be used with such type of frequency inverter   2. The function expansion unit has a internal fault
aL. 064	The function expansion unit has a resource conflict		This expansion unit can not be used with other expansion units
aL. 065	Fail to establish communications with function expansion unit 1		
aL. 066	Fail to establish communications with function expansion unit 2		
aL. 067	The communication links of function expansion unit 1 is interrupted abnormally		
aL. 068	The communication links of function expansion unit 2 is interrupted abnormally		
aL. 071	The parameter download is failed (note: download is from operation panel to control panel of frequency inverter; upload is from control panel to operation panel)		Inspect whether the communication interface between operation panel and control panel is normal or not
aL. 072	The memory of panel fails to be operated		
aL. 073	The memory of panel inhibits write and can not download parameters		
aL. 074	The upload of parameters is failed (automatically recover to the numerical value before uploading)		1. Inspect whether the communication interface between panel and control panel is normal or not.   2. In the parameter F0.0.08, parameter upload is forbidden in terms of local upload.
aL. 075	The version of panel parameters is different from that of equipment		Re-upload panel parameters same as the version of equipment parameters


Display	Warnings	Can be shielded or not	Solutions other than shielding
	parameters; it can not be uploaded		
aL. 076	The panel has no effective parameters and can not be uploaded		The panel parameters are not modified effectively and need not to be uploaded
aL. 077	The panel parameters exceed the setting scope INV allowed and fail to be uploaded		Confirm the allowed parameter scope, reset and upload
aL. 099	The operation panel is abnormally connected		After power off, reinsert and pull out of the panel or replace the panel
aL. 100	The control program is failed resulted from electromagnetic interference		Improve electromagnetic environment
aL. 101	The setting parameters are conflicted		Reset the parameters correctly
aL. 102	The setting parameters fail to connect the corresponding expansion card		Reset the parameters or inspect the connection of expansion card
aL. 103	The setting motor parameters are conflicted (rated frequency, rotating speed conflict)		Reset the motor parameters
aL. 104	The setting motor parameters are conflicted (no-load current, rated current, rated rotating speed, rated frequency and rotor time constant)		Reset the motor parameters
aL. 105	The inductance parameters of motor stator overflow		Reset the inductance parameters of motors stator
aL. 106	Contradictive settings of the rated frequency, revolution and pole pairs of synchronous motor		Check the settings of the motor parameters and make correct modification
aL. 130	Dedicated for the expansion		
aL. 201	The setting parameters are conflicted and it's about to shut down		Immediately contact the direct supplier

### 8.2 ABNORMAL OPERATION WITHOUT PROMPTS AND THE SOLUTIONS

## 1. THE MOTOR IS NOT ROTATED:

Possible causes	Solutions			
$\begin{array}{l}\text { The operation command channel is } \\ \text { wrongly selected }\end{array}$	$\begin{array}{l}\text { Switch the operation command channel into correct one via PANEL/REMOTE } \\ \text { key in operation panel or remote terminal }\end{array}$			
$\begin{array}{l}\text { The operation command source is } \\ \text { wrongly selected }\end{array}$	$\begin{array}{l}\text { According to the need on the site, reset the selection of operation command } \\ \text { source ([F0.1.15]), control command 1([F0.3.33]) and control command } \\ \text { 2([F0.3.34]) }\end{array}$			
$\begin{array}{l}\text { The setting frequency is below the } \\ \text { starting frequency }\end{array}$	$\begin{array}{l}\text { 1. Set the setting frequency to be above the starting frequency ([F0.4.39]) } \\ \text { 2. Inspect whether the frequency setting channel is normal or not, eliminate } \\ \text { possible analog input frequency setting failures and shuttle potentiometer } \\ \text { failures, etc. }\end{array}$			
3. Correctly connect the external terminals related to frequency setting		$]$	Other frequency command sources   with higher priority are valid	According to the need on the site, reset the frequency (rotating speed) setting   priority ([F5.3.28])
:---	:---			
The upper and lower frequency limit   is set improperly.	Inspect the data of upper ([F0.1.21]) and lower ([F0.1.22]) frequency limit and   reset			
	In V/F control mode   1. Increase the torque of motor and boost voltage ([F1.2.18])   2. Adjust V/F curve   In SVC/VC control mode			
The motor has insufficient torque				
1. Re-measure the parameters of motor ([F2.2.53])				
2. Adjust vector mode and start pre-excitation time ([F2.2.52])				

## 2. THE MOTOR IS ROTATING BUT THE SPEED CAN NOT BE INCREASED:

Possible causes	Solutions
The setting value of maximum   output frequency is too low.	Increase the value of maximum output frequency ([F0.1.20]).
The setting value of upper   frequency limit is too low.	1. Increase the data of upper frequency limit ([F0.1.21]).   2. Increase the maximum value of frequency setting channel 1 ([F0.2.28]) and   2 ([F0.2.31]).
The set frequency is too low.	Inspect whether the setting of selection of frequency setting channel   ([F0.1.16]) is correct or not; the set frequency value is lower or the frequency   setting channel is faulty.
The acceleration period is too long.	Set appropriate acceleration time ([F1.0.03], [F1.0.05], [F1.0.07], [F1.0.09]).
The parameter values of motor are   set improperly	1. Confirm whether ([F2.0.00] ~[F2.0.09]) is compatible with the parameters of   motor.   2. In vector control mode, make the motor re-self measured and get correct   internal motor parameters.
The output frequency is not rising   resulted from current limit   protection	1. According to the requirements on the site, reasonably configure the   acceleration/deceleration current limit level ([F1.4.39]), strong starting   current limit level (F1.4.40) and maintenance time ([F1.4.41]).   2. Restart after reducing torque and boosting voltage (F1.2.18) and observe   whether the output frequency is rising or not.
The output frequency is not rising   resulted from torque setting limit	Confirm the torque setting limit ([F8.3.47], [F8.3.48]~[F8.3.51])sets correct   value.   appropriate or not. Adjust V/F setting into rated value of motor.

## 3. THE DIRECTION OF ROTATION OF THE MOTOR IS OPPOSITE TO THE COMMAND:

Possible causes	Solutions
Operation direction	Inspect the setting of operation direction ([F0.1.17]).
The F/R function code in   multifunctional input terminal is   wrongly selected	Inspect whether the multifunctional input terminal ([F3.0.00] ~[F3.0.08])   correctly selects the function code of FWD operation command terminal, REV   operation command terminal and three-wire operation control.
The action mode of external   control terminal is wrongly selected	Inspect the action mode of external control terminal (F0.3.35).
Inspect the wiring connecting with   the motor	Exchange the connection of any two phases of U, V, and W of frequency   inverter or motor.
Inspect the connection of F/R   control terminal	Inspect the connection of multifunctional input terminal set as FWD operation   command terminal, REV operation command terminal and three-wire   operation control.

## 4. ROTATING SPEED VARIATION AND CURRENT FLUCTUATION OCCURS IN CONSTANT SPEED OPERATION

Possible causes	Solutions
The frequency setting varies	When the frequency is set by adopting analog input terminal, the analog input   filtering time constant can be increased. ([F4.0.06], [F4.0.07], [F4.0.08])
The carrier frequency is set   lower	Increase the carrier frequency of the frequency inverter ([F1.1.13]), change the   carrier characteristics ([F1.1.14]) and observe whether the oscillation is   disappeared.
The load type is set improperly	Set steady load operation in macro parameter ([F0.0.0]) and confirm whether   there's vibration or not.


Possible causes	Solutions		
The motor parameters are set   inaccurately	1. Make sure the motor parameters ([F2.0.00~F2.0.09]) are set correctly or reself   adjust the internal parameters of the motor.   2. Adjust motor speed closed loop PID parameter ([F8.2.25 ~ F8.2.27]).		
The wiring between frequency   inverter and motor is long	Shorten the output wiring as much as possible or install AC reactor.		Vibration is caused due to the   vibration system with lower   rigidity at the side of the load
:---			
Cancel the increasing of automatic torque, automatic energy-saving operation,   anti-overload control, current limit, torque limit and confirm whether the vibration   is disappeared.			

## 5. THE MOTOR ROARS OR HAS ABNORMAL SOUND

Possible causes	Solutions
The carrier is lower	Increase the carrier frequency of the frequency inverter ([F1.1.13]).
The surrounding temperature of   the frequency inverter is higher	1. If the temperature exceeds $40^{\circ} \mathrm{C}$, it shall strengthen Ventilation and reduce   temperature.   2. Reduce load and the temperature of frequency inverter (reduce upper   frequency limit for fan and pump ([F0.1.21])).   3. Select temperature associated adjustment function in carrier characteristics   ([F1.1.14]).
Output phase failure	1. Inspect the connection between frequency inverter and motor.   2. Inspect whether the three-phase winding of the motor is faulty or damaged.
The motor parameters are set   improperly	Adjust motor speed closed loop PID parameter ([F8.2.25~F8.2.27]).
Mechanical resonance	1. Operate the motor separately, find the reasons of resonance and improve the   characteristics at one side of the motor
2. Adjust hopping frequency ([F5.0.00] ~)[F5.0.05]) and avoid continuous	
operation in the frequency area where resonance occurs.	

## 6. THE MOTOR DOES NOT ACCELERATE OR DECELERATE WITHIN THE SETTING ACCELERATION AND DECELERATION TIME

Possible causes	Solutions
Operate in the form of S   acceleration and deceleration   curve	1. Set the acceleration and deceleration characteristic parameter ([F1.0.00]) into   linear acceleration and deceleration mode and observe the acceleration and   deceleration conditions.   2. Shorten the acceleration and deceleration time ([F1.0.03] ~[F1.0.10]) and   observe the acceleration and deceleration conditions.
Current limit action, the   frequency rising is restricted (in   acceleration)	1. Increase the data of acceleration current limit level ([F1.4.39]) and strong   starting current limit level ([F1.4.40]).   2. Prolong acceleration time ([F1.0.03], [F1.0.05], [F1.0.07], and [F1.0.09]).
The motor has insufficient   torque	Increase torque and boost voltage ([F1.2.18]) and confirm whether it is started.
The acceleration and   deceleration of frequency is   limited due to the limitation of   torque	1. Reset the torque setting limit ([F8.3.47]) and maximum and minimum torque   limit value. ([F8.3.48] ~ [F8.3.51]).   2. Prolong acceleration and deceleration time ([F1.0.03] ~ [F1.0.10]).
Wrongly select the acceleration   and deceleration time	Inspect whether the selection signal for acceleration and deceleration time of   multifunctional input terminal ([F3.0.00] ~ [F3.0.08]) is correct or not.

## 7. AFTER TRANSIENT POWERED OFF, THE MOTOR CAN NOT BE STARTED EVEN IT IS POWERED ON.

Possible causes	Solutions
Restart function after power off   (F0.4.48) is prohibited	Set the restart function after transient power off ([F0.4.48]) as valid.
The operation command is   maintained in OFF status when it   is power on.	Confirm the reset sequence of external circuit, if necessary; discuss whether to   adopt the holding relay of operation command.

## 8. THE PARAMETERS ARE SET IMPROPERLY AND THE ORIGINAL VALUE OR DELIVERY VALUE NEEDS TO BE RECOVERED.

Possible causes	Solutions
The function code is conducted   unnecessary parameter setting	Recover the parameters not necessary to be set into default.
The function code is conducted   wrong parameter setting	Reset necessary function codes after initialization of parameter set as needed   and confirm actions.

### 8.3 FAILURES IN SETTING OPERATION OF FREQUENCY INVERTER

## 1. NO DISPLAY IN THE OPERATION PANEL

Possible causes	solutions
The operation panel is not   correctly connected to the   frequency inverter	1. Confirm whether the operation panel is correctly connected to the frequency   inverter, take it down and reinstall.
2. Replace other operation panels and confirm display.	

## 2. THE FUNCTION CODE CAN NOT BE CHANGED

Possible causes	Solutions
Some codes can not be changed   during operation	Confirm whether it is operating and whether the function code to be changed in   the function code list can be changed during operation.
The parameters are locked	Confirm the locking conditions of parameters ([F0.0.05]), ([F0.0.06]); If the   parameters are subject to be modified, the locking password with   corresponding modification permissions shall be input first.
Did not press OK key	Confirm whether the OK key is pressed after the modification of function code   data.
There's failure in the connection   between operation panel and   frequency inverter	Remove the operation panel and reinstall or replace a new operation panel.

### 8.4 INQUIRY FOR FAILURE RECORD

This series of frequency inverter records the failure code for the recent 8 times and the output parameters of frequency inverter for the last failure. Looking up such information can help find the reasons of failure.

The failure information and status monitoring parameters are stored uniformly. Please look up the information referring to operating methods of keyboard.

Monitoring items	Content	Monitoring items	Content	Monitoring items	Content
dE.0.00	The last failure	dE.0.09	The output current in the last failure	dE.0.18	The accumulative running time (h) in the last failure.
dE.0.01	Historical failure 1	dE.0.10	The output voltage in the last failure.	dE.0.19	The interval time (h) of running between the recent two failures.
dE.0.02	Historical failure 2	dE.0.11	Detected motor speed (with speed sensor) in the last failure.	dE.0.20	The sync output frequency in the last failure.
dE.0.03	Historical failure 3	dE.0.12	DC side voltage in the last failure.	dE.0.21	
dE.0.04	Historical failure 4	dE.0.13	The output torque in the last failure.	dE.0.22	
dE.0.05	Historical failure 5	dE.0.14	The target frequency in the last failure.	dE.0.23	
dE.0.06	Historical failure 6	dE.0.15	The highest temperature of the equipment in the last failure.	dE.0.24	
dE.0.07	Historical failure 7	dE.0.16	Command status in the last failure (See the following table for detail).	dE.0.25	
dE.0.08	The operation frequency in the last failure (rotor sync)	dE.0.17	The operating conditions of frequency inverter in the last failure (see the following table for detail).		

Description of command and operation status

dE.0.16	LED units   0:Stop command   1:Operation command   LED tens, hundreds, thousands: retained
dE.0.17	LED unit: operation mode   0: VF mode   1: Open loop vector speed   2. Closed loop vector speed   3. Open loop torque control   4: Closed loop torque control   5: V-F separation control   LED tens: operation status   0 : Shut down 1:Start and accelerate   2: Stop and decelerate   3: Reduce frequency and decelerate   4:Stable operation   LED hundreds: electric/braking status   0 : Electric operation   1: Power generation operation   LED thousands: limit suppression   0 : No action   1: Over current suppression action   2: Over voltage suppressor action   3: Under voltage suppressor action

### 8.5 RESET OF WARNING OR ALARM FAILURE

When warning or alarm failure appears, the following operations can be selected:

1. When failure code displays, press STOP/RESET key.
2. When external terminal operation command channel is adopted and the terminal for failure reset is defined as valid in multifunctional input terminal Dix, the failures are reset.
3. When the field bus operation command channel is adopted, the upper computer can send fault reset command to frequency inverter through RS485 interface.
4. Power off.
> The failures causes must be checked thoroughly and eliminated before reset, otherwise, the frequency inverter may be damaged permanently.

If it can not reset or failures reoccur after reset, it should check the causes; continuous reset will damage the frequency inverter.
$>$ The reset shall be conducted 5 minutes later in overload and overheating protection action.
> When external terminals control, the fault reset shall be conducted after the removal of terminal operation command.

## 9. MAINTENANCE

Many factors such as temperature, humidity, dust and vibration of the use environment, and internal components aging, wear of frequency inverter, which may lead to hidden fault of frequency inverter. In order to ensure the frequency inverter of long and steady operation, its maintenance is required in the storage and the process of use.

After long-distance transportation of the frequency inverter, users should check whether the components are in good condition, or the screws are fastened before use them. During the normal use period, users shall regularly clean the internal dust of frequency inverter and check whether the screws are loose.
> The inspection shall be carried out by professional technician, and the power of frequency inverter shall be cut off.
> For frequency inverter with more than half year of storage time, when an electric current is applied, users shall boost the voltage slowly through voltage regulator to supply the power, or otherwise will lead to the risk of electric shock and explosion (internal electrolysis condenser).

Due to the high voltage of frequency inverter in service, the wrong operation can result in serious injury or death, therefore, the power supply of the frequency inverter shall be cut off, and the maintenance operation after ten minutes after the nixie tube of the frequency inverter panel extinguishing can be carried out.

### 9.1 ROUTINE MAINTENANCE

Through routine maintenance, all kinds of abnormal condition and abnormal cause can be found promptly, and the faults and hidden dangers can be eliminated as soon as possible. Thus, the normal operation of equipment can be guaranteed and also the service life of the frequency inverter can be prolonged. Refer to the following table for routine maintenance.

Table 9-1 Tips for inspection and maintenance

Object checked	Inspection cycle		Scope of inspection	Assessment criterion
	Irregularly	Regularly		
Operation environment	$\checkmark$		1. Humidity, temperature   2. Dust, moisture   3. Gas	1. Open the frequency inverter when the temperature is above $45^{\circ} \mathrm{C}$, keep humidity below $95 \%$, without frost deposit   2. Free from peculiar odor, inflammable and explosive gas
Cooling system		$\checkmark$	1. Installation environment   2. Frequency inverter fan	1. The installation environment shall be well ventilated and the duct has no block   2. Fan is in well operation and without abnormal noise
Frequency inverter	$\checkmark$		1.Vibration, temperature rise   2. Noise   3. Wire, terminal	1. Vibration is smooth and outlet temperature is normal   2. No abnormal noise and no peculiar smell   3. No loose for fastening screw
Generator	$\checkmark$		1.Vibration, temperature rise   2. Noise	1. Smooth operation and normal temperature   2. No abnormalities and inconsistent noise
Input and output parameter	$\checkmark$		1. Input voltage   2. Output current	1. The input voltage is in the specified scope   2. Output current is under the rated value

> Electrical insulation experiment of frequency inverters has been conducted before leaving the factory, and users do not need to conduct the compression test again, or the internal components could be damaged.
> If the frequency inverter is required to undergo the insulation testing, just make sure that all the input and output terminals connected in a reliable way. For a single terminal, insulation testing is strictly prohibited and conduct the test with 500 V tramegger
> Do not use tramegger to measure the control circuit. As the frequency inverter has internal static sensitive element, the direct touch is therefore prohibited.
> When conducting the insulation testing for the generator, remove the connection line between generator and the frequency inverter.

### 9.2 INSPECTION AND DISPLACEMENT OF THE VULNERABLE COMPONENTS

During operation, some components of frequency inverter may be worn or the performance is slowed down. In order to ensure the stable reliable operation of frequency inverter, the users shall carry out preventative maintenance for frequency inverter, and replace the components when necessary.

### 9.2.1 FILTER CAPACITOR

Possible causes of damage: Environmental temperature and the pulsating current are high, and electrolyte is aging.

Assessment criterion: When frequency inverter operate with load, uses check whether there occur fault such as over current, over voltage; whether liquid leaks out, whether the relief valve bulge; whether the determination of electrostatic capacitive and insulation resistance are abnormal.

The pulsating current of main loop would affect the performance of the aluminum electrolysis filter capacitor, and the degree of influence depends on the environment temperature and the using conditions. Replace electrolytic capacitors of frequency inverter every three to four years under normal conditions.

Filter capacitor shall be replaced immediately if any of the following occurs: electrolyte of the electrolyte capacitor leaks, relief valve emits out, and subject of the capacitor expands.

### 9.2.2 COOLING FAN

Possible causes of damage: Bearing wear, leaf aging.
Assessment criterion: When the power of frequency inverter is cut out, check the fan blades and other parts to see whether there is any abnormality such as crack. With the power on, just check whether the fan operation situation is normal, and whether it has abnormal vibration and noise.

Service life of the entire cooling fan in frequency converter is about 15000 hours (i.e. frequency inverter use continuously for about two years), if the fan has unusual voice or vibration, it should be replaced immediately.

### 9.3 STORAGE

After purchase the frequency inverter, if the frequency inverter will be spared for a while or stored for a long time, users shall pay attention to the following items:

1. Storage environment should comply with the following table:

Environmental   characteristics	Requirements	Remarks
Ambient temperature	$-10{ }^{\circ} \mathrm{C} \sim 45^{\circ} \mathrm{C}$	Long-term storage temperature is no more   than $45^{\circ} \mathrm{C}$, so as to avoid the degradation of   capacitance characteristics. It shall avoid   condensation and frozen environment caused   by sudden change of temperature.
Relative humidity	$5 \sim 95 \%$	It can adopt measurement like plastic film   sealing and desiccant.
Storage environment	Free from direct sunlight, no dust,   no corrosive, no combustible gas,   no oil, no steam, no gas, no drip,   no vibration, and with little salt	

2. If the frequency inverter is not in use for a long time, the current shall be applied to restore filter capacitor characteristics every half year, and at the same time other features of the frequency converter shall also be checked. When the current is applied, it shall increase the voltage gradually through autotransformer, and the conduction time should be above half an hour.

$>$ If the frequency inverter is not in use for a long time, the internal filter capacitance characteristics would decline.

### 9.4 WARRANTY

If the frequency inverter body has the following cases, the company will provide guarantee service:

1. If failures or damages occur in normal use within the warranty period (within 18 months from the date of purchase), our company will provide free maintenance. Our company will charge a reasonable cost of maintenance in case of more than 18 months above.
2. Even in the guarantee period, if any failure is caused by the following cases, our company will charge some of the maintenance cost:
(1)Malfunction due to that the users do not operate according to the operation manual or beyond the standard;
(2)Malfunction due to repair and modification without permission;
(3)Malfunction caused by poor preservation;
(4)Malfunction caused by improper use;
(5)Damage to the machine due to fire, corrosive salt, gas corrosion, earthquake, storms, floods, thunder, abnormal voltage or other force majeure.
3. The company will provide lifelong paid maintenance services even the warranty period expires.

## 10. EXAMPLE OF USAGE

### 10.1 ENERGY-SAVING TRANSFORMATION OF ESCALATORS

Operating requirements: Activate operation when it senses people approaching and operate a frequency of 50 Hz ; if there is no input of sensor signal in 10 seconds, it comes that: Plan 1) automatically stop; Plan 2) lower the frequency to 20 Hz .

### 10.1.1 SCHEME DESCRIPTION

## Scheme 1:

1. F0.1.16 $=0$ (Factory Default)

Frequency setting channel
2. F0.2.25 $=2$ (Factory Default)
3. $\mathrm{F} 0.2 .29=50.00$
4. $F 0.3 .33=1$
5. $\mathrm{FO} 0.3 .35=0002$
6. F5.1.06=1010
7. F5.1.09=10000
8. F5.1.16=0003
9. $\mathrm{F} 3 \cdot 0.00=7$
10. FF.0.01=55
11. FF.0.09=55
12. FF. $0.02=44$
13. FF. $0.10=19$
14. FF. $017=0010$

Frequency digital setting
Frequency settings
Select the external terminal control of control commands
Three-line model 1
Timer 1's clock cycle: 1ms; stop- operate trigger-start; state reset of multifunctional terminal; multi-cycle timing.

Timer 1: cycle reaches 10000 ms .
Timer 1 outputting signal 1 : cycle reaches 0.5 ms pulse.
Multifunctional terminal D11 is defined as FWD operating terminal (to receive sensor signals)

Virtual output of SDO1 signal - state of DI1
Virtual input of SDI1 signal - timer 1 resets terminals
Virtual output of SDO2 signal - timer 1's cycle reaches 0.5 ms pulse.
Virtual input of SDI2 signal - three-line operates controlling terminal
Phase-reversing connection between SD02 and SDI2

## Scheme 2:

1. F0.1.16=2 Multifunctional terminal selection of frequency settings
2. F0.2.25=2 Digital setting of frequency channel 1
3. $F 0.2 .26=2$
4. $F 0.2 .29=50$
5. F0.2.32=20
6. $F 0.3 .33=1$
7. $F 0.3 .35=0002$
8. $\mathrm{F} 3 \cdot 0.00=7$
9. $F 5.1 .06=0000$

Digital setting of frequency channel 2
Frequency setting of frequency channel 1
Frequency setting of frequency channel 2
External terminal controlling
Three-line model 1
Multifunctional terminal D11 is defined as FWD operating terminal (to receive sensor signals)

Timer 1's clock cycle: : 1ms; stop- operate trigger-start of multifunction terminals; state reset of multifunctional terminal; single-cycle timing.
10. F5.1.09=10000
11. F5.1.16=0004
12. FF. $0.01=55$
13. FF. $0.09=55$
14. FF. $0.02=44$
15. FF. $0.10=12$
16. FF. $0.03=46$
17. FF. $0.11=19$
18. FF. $0.04=13$
19. FF. $0.12=52$
20. FF. $017=0100$

Timer 1: cycle reaches 10000 ms .
Timer 1 outputting signal 1: cycle reaches level output.
Virtual output of SDO1 signal - state of DI1
Virtual input of SDI1 signal - timer 1 resets terminals
Virtual output of SDO2 - timer1's cycle reaches the output level signals.
Virtual input of SDI2 signal - change of frequency order
Virtual output of SDO3 signal - timer 2's cycle arrives.
Virtual input of SDI3 signal - three-line operating control
Virtual output of SDO4 - frequency inverter quickens operation
Virtual input of SDI4 signal - timer 1 triggers signal.
Phase-reversing connection between SDO3 and SDI3

### 10.1.2 WIRING DIAGRAM



### 10.2 MAKE SIMPLE TENSION CLOSED-LOOP CONTROL WITH OFFSET PID

Use requirements: Frequency inverter adopts closed-loop torque controlling in leather rolling and meets the demand of production rolling. Users only need to make out a torque and a limited speed and then adjust torque output through tension feedback for a constant tension.

Site requirements:

Motor rolling: power: 5.5 KW
Pole number: 2
Signal outputting: 0-10V
Diameter of full winding: 1 m

Rated torque 36: Nm
Tension sensor: Measuring range 0-40N
Winding diameter: Diameter of hollow winding 0.5 m

## 10．2．1 DIAGRAM OF CONSTANT TENSION CONTROL



## 10．2．2 DIAGRAM OF CONTROL STRUCTURE



## 10．2．3 CONFIGURATION

1．$F 0.0 .09=0010$
2． $\mathrm{F} 8.3 .39=1$
3． $\mathrm{F} 8.3 .40=8$
4．$F 8 \cdot 3 \cdot 42=1$
5．$F 8.3 .43=1$
6．$F 8.3 .45=1500$

7．$F 8.3 .46=1500$

8． $\mathrm{F} 8.3 .47=0000$
9．$F 8 \cdot 3.48=-100$

10．$F 8 \cdot 3 \cdot 50=100$
11． $\mathrm{F} 9.0 .00=0101$
12． $\mathrm{F9} .0 .01=100$
13．F9．0．02＝0010

Closed－loop vector controlling mode
Torque model
Torque channel selects offset PID output
Time of torque ascending 1 s
Time of torque descending 1s
Positive rotated speed limited set on the basis of motor＇s actual rated rotated speed

Reverse rotated speed limited set on the basis of motor＇s actual rated rotated speed

Torque limited channel setup
Smallest torque limited：－K＊R＊F／T＊100\％$\quad R$ ：biggest semidiameter $F$ ： tension value setting T ：torque given $\mathrm{T}_{\text {（rated torque of motor output）}}=9550 * \mathrm{P} / \mathrm{N}, \mathrm{N}$ ： rotated speed given $100 \%<K<250 \%$

Biggest torque limited：$\quad \mathrm{K} * \mathrm{R} * \mathrm{~F} / \mathrm{T} * 100 \%$ Input together of offset PID and frequency inverter Independent PID Offset proportion：R＊F／T（rated torque of motor output）＊\％
Offset PID outputs bipolar positive deviation
14. $F 9 \cdot 0 \cdot 03=20$
15. $\mathrm{F} 9.0 .04=2$
16. F9.0.05=0.2
17. F9.0.06=5
18. $\mathrm{F9} \cdot 0.07=1$
19. $\mathrm{F} 9.0 .08=0$
20. F9.0.11=62.5
21. $\mathrm{F} 9 \cdot 0.12=0$
22. $\mathrm{F9} \cdot 0.13=0$
23. $\mathrm{F} 9.0 .14=8.3$
24. F9.0.15=(R+r)/2
25. F9.1.21=0011
26. F9.1.23=0060
27. F9.1.24=0080
28. F9.1.29=2
29. F9.1.30=18
30. F9.1.31=0.5
31. F9.1.33=5

Proportional gain of PID in first part (relatively bigger than parameter value in second part)
Integral time of PID in first part (relatively smaller than parameter value in second part)
Differential coefficient of PID in first part
Differential inertia filtering time PID in first part
Offset PID output of Inertia filtering time
Offset PID internal figure setup
Offset PID internal figure given: (R+r)*F/2T*100\%
Offset PID feedback selects analog quantity AI1
Feedback input being OV contrary to $0 \%$ feedback
Feedback input contrary to $100 \%$ feedback: Fm * $\mathrm{R}+\mathrm{r}$ )/2T*10, (Fm:
full-scale tension value of tension sensor; tension sensor output signal: $0-10 \mathrm{~V}$.

Feedback multiplication factor transform feedback tension signal into torque signal depending on feedback factor

Offset PID selects double-PID parameter switch PID parameter according to feedback value

Feedback value of lower-limited switching value 60\%
Feedback value of top-limited switching value 80\%
Proportional gain of PID in second part
Integral time of PID in second part
Differential coefficient of PID in second part
Regulator output of filtering time constant

### 10.2.4 WIRING DIAGRAM



### 10.3 APPLICATION IN MECHANICAL FACTORY

Use requirements: After 50 times' external sensor signal receiving, operate the frequency inverter with first step from 20 Hzto 20 s forwardly and second step from 30 Hz to 40 s reversely. Then make a stop and wait for the next operation.

### 10.3.1 CONFIGURATION

1. $F 0.3 .33=1$

Controlling order to be the external terminal controlling
2. $\mathrm{F} 0.3 .35=0002$

Function model of external controlling terminal to be the three-line model 1
3. F1.0.03=5

Time for accelerating 5 s
4. $\mathrm{F} 1.0 .04=5$

Time for slowing down 5s
5. F3.0.00=44

DI1 terminal id defined as timer 1's clock terminal
6. F5.2.20=0100

Select timer 1 work model
7. F5.2.22=50 Set number counting as 50
8. $\mathrm{F} 6.0 .00=20$ Set first velocity as 20 Hz
9. F6.0.01=30 Set second velocity as 30 Hz
10. F6.1.15=0011

Operation model selects the stop model of multi-velocity single cycle
11. F6.1.17=0010
12. $\mathrm{F} 6.1 .31=20$
13. $F 6.1 .32=40$
14. FF. $0.01=40$
15. FF.0.09=7

Virtual input of SDI1 signal - positive shift FWD terminal
16. FF. $0.02=46$

Virtual output of SDO2 signal - timer 2's cycle arrives.
17. FF. $0.10=19$

Virtual input of SDI2 - three-line operating control
18. FF.0.17=0010 Phase-reversing connection between SDO2 and SDI2

### 10.3.2 EXTERNAL CIRCUIT WIRING DIAGRAM



### 10.4 MULTI-PID SETUP, MULTI-PART PID SETUP, FORM A MULTI-STEP PIDSETUP (TO REDUCE OVERSTRIKE)

### 10.4.1 PARAMETER SETUP

1. $F 6.1 .15=0053$
2. F6.1.31=1
3. F6.1.32=1
4. $F 6 \cdot 1 \cdot 33=1$
5. F6.1.34=1
6. F6.1.35=1
7. F6.1.36=1
8. $\mathrm{F} 6.1 .37=5$
9. $F 7.0 .00=0001$
10. $F 7 \cdot 0.13=10$
11. $F 7.0 .17=15.85$
12. $F 7 \cdot 0.18=14$
13. F7.1.27=10
14. $F 7 \cdot 1 \cdot 28=20$
15. F7.1.29=30
16. $F 7 \cdot 1 \cdot 30=40$
17. F7.1.31=50
18. F7.1.32=60
19. F7.1.33=80

Multi-part PID operating input(keep the final value stop model)
Time for operating in part 1: 1s
Time for operating in part 2: 1 s
Time for operating in part 3: 1 s
Time for operating in part 4: 1s
Time for operating in part 5: 1s
Time for operating in part 6: 1s
Time for operating in part 7: 5 s
Process PID input without requirements $100 \%$ feedback corresponding simulation: 10V

Proportional gain: 15.85
Integral time: 14
Part 1 in process PID given with $10 \%$
Part 2 in process PID given with $20 \%$
Part 3 in process PID given with $30 \%$
Part 4 in process PID given with $40 \%$
Part 5 in process PID given with $50 \%$
Part 6 in process PID given with $60 \%$ Part 7 in process PID given with $70 \%$

### 10.4.2 DIAGRAM OF STEP PID VALUE GIVEN



# 11. DESCRIPTION OF COMMUNICATION PROTOCOL 

### 11.1 MODBUS PROTOCOL DESCRIPTION

### 11.1.1 PROTOCOL OVERVIEW

Modbus protocol is a universal protocol used in the industrial control unit. Because this protocol can be conveniently applied, this protocol has been considered as the general industry standard and is widely applied to the integrated system of master controllers and slave units. By applying this protocol, units of various brands can be connected together and functioning as an industrial network.

Modbus defines 3 types of transmission modes: ASCII, RTU and TCP. A510 Frequency inverter only supports RTU mode.

### 11.1.2 INTERFACE AND TRANSMISSION METHOD

A510 utilizes RS485 (RS232, optional, which has to be converted by a level) as the physical interface for Modbus, and one host can control one or more (maximum 247 units) frequency inverters.

Terminal   Identifier	Terminal Usage	Function
RS+	Data Transceiving Terminal(+)	When connected to PC/PLC via RS 485 communication   interface, connect to (+) signal
RS-	Data Transceiving Terminal(-)	When connected to PC/PLC via RS 485 communication   interface, connect to (-) signal

By applying the asynchronous serial half-duplex transmission method, only master unit or slave unit can transmit data at one particular moment, and the other unit can only receive data.

### 11.1.3 DATA STRUCTURE

1. 4 Optional Data Transmission Formats
(1) 1 start bit, 8 data bits, 1 stop bit, without parity bit (factory setting)
(2) 1 start bit, 8 data bits, 1 stop bit, even parity
(3) 1 start bit, 8 data bits, 1 stop bit, odd parity
(4) 1 start bit, 8 data bits, 2 stop bit, without parity bit
2. Baud rate

Seven optional baud rates: 1200bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps, $38400 \mathrm{bps}, 79600 \mathrm{bps}$
3. Communication rules

Starting interval between data frames is longer than 3.5 byte transmission cycle (standard), but the minimum interval should not be shorter than 0.5 ms .

### 11.1.4 PARAMETER CONFIGURATION FOR FREQUENCY INVERTERS

FA. 0.00 is a read-only parameter, and is used to display the status of the communication card connection and bus;

FA.0.01 $=00 \mathrm{XX}$, unit digit is used to choose baud rate, and tens digit is used to choose data format;
FA. $0.02=\mathrm{X}$, choose the address of this station;
FA.0.03~ FA.0.06, configure supporting communication parameters; refer to functional parameter table for detailed functions.
> X indicates that this digit can be any value in the allowed range.

### 11.1.5 BRIEF INTRODUCTION OF FUNCTIONS

The Modbus functional codes supported by A510 are listed below:

Function	Code   (Hexadecimal)	Description of Functions
Read coil status	$0 \times 01$	Read coil status by digit. Each digit for the controlling character is   mapped to coil 0~15 respectively.
Read discrete input   status	$0 \times 02$	Read discrete input status. Each digit for the status character is   mapped to coil 0~15 respectively.
Read multiple hold   registers	$0 \times 03$	Read multiple hold registers. It can read all the application   parameters, status parameters, controlling characters, status   characters and setting values of A510.
Read multiple input   registers	$0 \times 04$	Read multiple input registers. The address for analog input register   starts from 0x1200.
Enforce single coil	$0 \times 05$	Perform writing action for a single output digit. Each digit for the   controlling character is mapped to coil 1~16 respectively.
Write to a single hold   register	$0 \times 06$	Perform writing action for a single hold register. All the parameters,   controlling characters, status characters and setting values of A510   are mapped to the hold register.
Query for the anomaly   status	$0 \times 07$	Query for the anomaly status information. In A510, the failure   information of the frequency inverter can be queried.
Failure diagnosis	$0 \times 08$	Execute field diagnosis for the bus failure. Support the sub-codes, like   querying (0x00), rebooting (0x01), monitoring (0x04) and   zero-clearing(0x0A) etc.
Enforce multiple coils	$0 \times 0$ F	Perform writing action for multiple output digits respectively. Each   digit for the controlling character is mapped to coil 1~16 respectively.
Write to multiple hold   registers	$0 \times 10$	Perform writing action for multiple hold registers. All the parameters,   controlling characters, status characters and setting values of A510   are also mapped to the hold register.
Read/write to multiple   hold registers	$0 \times 17$	This function equals to combining 0x03 and 0x10 into a new   command.

### 11.1.6 ACCESS ADDRESS SUMMARY

A510	Access Address	Functional Codes Supported (Hexadecimal)
Controlling digit   Multi-purpose terminal output Relay output	Coil ( $0 \times 1000-0 \times 1100$ )	0x01-Read coil status   $0 \times 05$ - Enforce single coil   0x0F- Enforce multiple coils
Multi-purpose terminal input for status digit	Discrete input (0x1100-0x1200)	0x02- Read input status
Analog input	Input register (0x1200-0x1300)	0x04- Read input register
Application parameters   Status parameters   Controlling characters, Status   characters   Setting values   Mapping status parameters   Mapping application parameters	Hold registers (application parameter area, status parameter area, $0 \times 1300-0 \times 1400$ )	0x03- Read multiple registers   $0 \times 06$ - Write to a single register   $0 \times 10-$ Write to multiple registers   $0 \times 17-$ Read/write to multiple registers

For detailed address distribution, please refer to below section of Modbus detailed address-finding distribution.

### 11.1.7 DETAILED MODBUS ADDRESS-FINDING DISTRIBUTION

## 1. Coil Address Summary (0x1000-0x1100)

Relevant Modbus functional codes: $0 x 01$ (read coil status), $0 \times 05$ (write to a single coil), 0x0F (write to multiple coils)

Register name	Function Description	Access Address
Controlling Digit - Digit 0	Keep	0x1000
Controlling Digit - Digit 1	Operation Allowed   $\begin{array}{ll}0 \text { : Operation banned } & 1 \text { : Operation allowed }\end{array}$	0x1001
Controlling Digit - Digit 2	Starting allowed   0 : Starting banned 1 : Starting allowed	0x1002
Controlling Digit - Digit 3	Keep	0x1003
Controlling Digit - Digit 4	Operation instruction    0: Stop 1: Operation	0x1004
Controlling Digit - Digit 5	Operation direction   0: Positive 1: Negative	0x1005
Controlling Digit - Digit 6	Emergency Stop   0: Invalid 1: Valid	$0 \times 1006$
Controlling Digit - Digit 7	Free slide stop   0: Invalid   1: Valid	0x1007
Controlling Digit - Digit 8	Keep	$0 \times 1008$
Controlling Digit - Digit 9	Keep	0x1009
Controlling Digit - Digit 10	Keep	$0 \times 100 \mathrm{~A}$
Controlling Digit - Digit 11	Keep	0x100B
Controlling Digit - Digit 12	Acceleration/deceleration banned 0 : Allowed 1: Banned	0x100C
Controlling Digit - Digit 13	Zero-clearing for integrator input   0: Invalid   1: Valid	0x100D


Register name	Function Description	Access Address
Controlling Digit - Digit 14	Remote Control   0: Invalid $\quad$ 1: Valid	$0 \times 010 \mathrm{E}$
Controlling Digit - Digit 15	Failure Reset $\quad$ 0->1 Reset	$0 \times 100 \mathrm{~F}$
DO1	Multi-purpose output terminal 1	$0 \times 1020$
DO2	Multi-purpose output terminal 2	$0 \times 1021$
EDO1	Multi-purpose output terminal 3 (extendable card)	$0 \times 1030$
RO1	Multi-purpose relay output 1	$0 \times 1040$
ERO1	Multi-purpose relay output 2 (extendable card)	$0 \times 1050$
Keep		$0 \times 1051 \sim 0 \times 1099$

## 2. Discrete Input Address Summary (0x1100 ~ 0x1200)

Relevant Modbus functional codes: 0x02 (read input status)

Register name	Function Description	Access Address
Status character-digit 0	Ready	$0 \times 1100$
Status character-digit 1	Operation allowed	$0 \times 1101$
Status character-digit 2	Starting allowed	$0 \times 1102$
Status character-digit 3	Keep	$0 \times 1103$
Status character-digit 4	Operation status	$0 \times 1104$
Status character-digit 5	Direction	$0 \times 1105$
Status character-digit 6	Zero speed	$0 \times 1106$
Status character-digit 7	Acceleration	$0 \times 1107$
Status character-digit 8	Deceleration	$0 \times 1108$
Status character-digit 9	Arrival	$0 \times 1109$
Status character-digit 10	Keep	0x110A
Status character-digit 11	Keep	0x110B
Status character-digit 12	Instruction source	0x110C
Status character-digit 13	Command source	0x110D
Status character-digit 14	Warning	0x110E
Status character-digit 15	Failure	0x110F
DI1	Multi-functional input terminal 1	$0 \times 1120$
DI2	Multi- functional input terminal 2	$0 \times 1121$
DI3	Multi- functional input terminal 3	$0 \times 1122$
DI4	Multi- functional input terminal 4	$0 \times 1123$
DI5	Multi- functional input terminal 5	$0 \times 1124$
EDI1	Multi-purpose input terminal 6 (extendable card)	$0 \times 1125$
EDI2	Multi-purpose input terminal 7 (extendable card)	$0 \times 1130$
EDI3	Multi-purpose input terminal 8 (extendable card)	$0 \times 1131$
EDI4	Multi-purpose input terminal 9 (extendable card)	0x1132
Keep		0x1133~0x1199

## 3. Input Register Address Summary (0x1200 ~ 0x1300)

Relevant Modbus functional codes: 0x04 (read input register)

Register name	Function Description	Value Range	Access Address
AI1	Analog input value 1	$0 \sim 4080$	$0 \times 1200$
AI2	Analog input value 2	$0 \sim 4080$	$0 \times 1201$
AI3	Analog input value 3 (extendable card)	$0 \sim 4080$	$0 \times 1202$
Fin	Pulse input value (extendable card)	$0 \sim 4080$	$0 \times 1203$
Keep			$0 \times 1204 \sim 0 \times 1299$

## 4. Hold Register Address Summary

Relevant Modbus functional codes: $0 \times 03$ (read multiple registers), x06 (write to multiple registers), $0 \times 10$ (write to multiple registers), $0 \times 17$ (read/write to multiple registers).

## Application parameter address

The application parameter access address can be obtained from the parameter's identifier when ascertaining the access address, the method is to ignore the sub-class code in the identifier (following referred to as "*"); let's see an example, for parameter identifier: HH.*.DD (eg.F2.0.33), it will obtain HHDD directly (hexadecimal format), and the access address for F2.0.33 is: 0xF233H. Below attached is the table for respective conversion of access addresses:

Parameter identifier	RAM Access Address ${ }^{(1)}$	ROM Access Address
F0.\#. $00 \sim$ F0.\#. 55	0xF000~0xF055	0xE000~0xE055
-..... - •	-••	-••
F9.\#. $00 \sim$ F9.\#. 55	0xF900~0xF955	0xE900~0xE955
FA.\#. $00 \sim$ FA.\#. 55	0xFA00~0xFA55	0xEA00~0xEA55
- ..... . -	-	-•
FF.\#. $00 \sim$ FF.\#. 55	0xFFF00~0xFF55	0xEF00~0xEF55
dE.\#. 00 ~ dE.\#. 55 (read-only)	0xDE00~0xDE55	0xBE00~0xBE55

Status parameter address (read-only): The address conversion method for status parameter is similar to that for application parameter. However, there is no ROM access address.

Parameter Identifier	RAM Access Address
$\mathrm{d} 0 . \# .00 \sim \mathrm{~d} 0 . \# .55$	$0 \times D 000 \sim 0 \times D 055$
$\mathrm{~d} 1 . \# .00 \sim \mathrm{~d} 1 . \# .55$	$0 \times D 100 \sim 0 \times \mathrm{D} 155$

Bus Controlling Parameter Address ( $0 \times 1300$ ~ 0x1400)

Register Name	Value Range	Access Address
${\text { Controlling character (mapping coils } 0-15)^{(2)}}^{\text {(2) }}$	$0 \sim 0 \times F F F F$	$0 \times 1300$
Modbus setting value 1 (Relative Value) $^{(3)}$	$-10000 \sim 10000$	$0 \times 1301$
Modbus setting value 2 (Absolute Value)	$-30000 \sim 30000$	$0 \times 1302$
Mapping application parameters 1 ${ }^{(4)}$	$[F 0.00 \sim$ FF.55]	$0 \times 1303$
Mapping application parameters 2	$[F 0.00 \sim$ FF.55]	$0 \times 1304$


Register Name	Value Range	Access Address
Mapping application parameters 3	[F0.00 ~FF.55]	$0 \times 1305$
Mapping application parameters 4	[F0.00 ~FF.55]	$0 \times 1306$
Mapping application parameters 5	[F0.00 ~FF.55]	$0 \times 1307$
Mapping application parameters 6	[F0.00 ~FF.55]	$0 \times 1308$
Status Character (Mapping discrete range 0-15)	$0 \sim 0 x F F F F$	$0 \times 1309$
Mapping status parameters 1	[d0.00 ~d1.49]	0x130A
Mapping status parameters 2	[d0.00 ~d1.49]	$0 \times 130 \mathrm{~B}$
Mapping status parameters 3	[d0.00 ~d1.49]	0x130C
Mapping status parameters 4	[d0.00 ~d1.49]	0x130D
Mapping status parameters 5	[d0.00 ~d1.49]	0x130E
Mapping status parameters 6	[d0.00 ~d1.49]	0x130F
Mapping status parameters 7	[d0.00 ~d1.49]	$0 \times 1310$
Mapping status parameters 8	[d0.00 ~d1.49]	$0 \times 1311$
Mapping status parameters 9	[d0.00 ~d1.49]	$0 \times 1312$
Mapping status parameters 10	[d0.00 ~d1.49]	$0 \times 1313$
Keep	Undefined	$0 \times 1314 \sim 0 \times 1400$

## Notes:

(1) If there is no need to keep the parameters permanently, it suffices to write the parameters to the RAM area. However, if the parameters have to be maintained permanently, it is required to write the parameter values into the ROM area. The service life of ROM area will be shortened if parameters are frequently written to the ROM area. If value F2.1.13 needs to be written and maintained permanently, the register address where it should be written to is 0xF213.
(2) When reading/writing controlling characters, it can be achieved via reading/writing to the coil mapped to each digit of controlling characters, and it can also be achieved via reading/writing to the hold register corresponding to the controlling characters. Both methods can achieve identical results. If it is needed to set the value for operation allowed, we can set the value of the digit 1 for controlling character (address $0 \times 1001$ ) as 1 via functional code 05 , we can also set the value of controlling character (address $0 \times 1300$ ) as $0 \times 0002$ via functional code 06 . When reading the status characters, the method is similar to that for reading/writing controlling characters. It can be achieved via reading the discrete input mapped to each digit of status characters, and it can also be achieved via reading the hold register corresponding to the status characters. If we need to read the operation direction, we can read the status digit 5 (address $0 \times 1105$ ) via functional code 02, we can also read the status character (address 0x1309) via functional code 03.
(3) Range for relative values is between -10000 ~ 10000, and correspondingly, they falls in $-100.00 \% \sim 100.00 \%$ range of the upper limit value that has been set.
(4) When we need to access several application parameters or monitoring parameters of discrete addresses, we can first map these parameters to bus control parameter area, and then we access to that area instead.

As a matter of fact, access for mapped parameters is a type of pointer access, and the mapping parameters can be set in the FA. 1 parameter group.
5. Anomaly Status Information: Relevant Modbus functional code $0 \times 07$ (Query)

The frequency inverter's failure warning status and code corresponding to each digit of the returned data Returned data - digit 7:0 - No failure on frequency inverter, 1 - Failure on frequency inverter
Returned data - digit 6:0 - No warning on frequency inverter, 1 - Warning on frequency inverter
Returned data - digit 5~0:each code of failure information corresponds to the identifier code following Fu in the failure code of the frequency inverter.

Each code of warning information corresponds to the identifier code following AL. in the warning code of the frequency inverter.

If data $0 \times 8 \mathrm{C}$ (10001100) is returned, it indicates that the failure code of the frequency inverter is Fu. 012; if data $0 \times 64$ ( 01100100 ) is returned, it indicates that warning code of the frequency inverter is AL.036.
6. Failure Diagnosis: Relevant Modbus functional code 0x08 (Diagnosis)

Sub-function code list

Sub-function code	Function	Query Data	Response Data
00	Return the identical query data	Random	Image query data
01	Re-start communication option (restore the   llisten only" status for 04 sub-code)	FF00/0000	FF00/0000
04	Enforce slave unit into "Listen Only" status and   the salve unit will not reply; the failed salve unit   can be removed from the communication   chain.	0000	No reply
OA	Clear all calculators and diagnosing registers	0000	Image query data
OB	Return the number of bus information items	0000	Total number of bus   information items
OC	Return the number of bus communication   failures (CRC error calculation)	0000	CRC error calculation
OD	Return the number of bus anomaly failures	0000	Number of anomaly data   items
OE	Return the number of salve unit information   items (corresponding with slave unit address or   the broadcasting information)	0000	Number of valid data items

### 11.1.8 EXAMPLES

## 1. Start 1 \# Frequency inverter Operation

Host request:

Slave Unit   Address	Functional   Code	Coil Starting   Address High   Digit	Coil Starting   Address Low   Digit	Write Values   High Digit	Write Values   Low Digit	CRC Check   Low Digit	CRC Check   High Digit
01	05	10	04	FF	00	C9	$3 B$

Slave Unit Response: Frequency inverter will operate in positive direction, and return the identical data as requested by the host.
2. Set the operation frequency as 25.00 Hz for frequency inverter, and correspondingly, it is $50.00 \%$ of the upper limit frequency 50.00 Hz .

Host request:

Slave Unit   Address	Functional   Code	Register   Starting   Address High   Digit	Register   Starting   Address Low   Digit	Register Data   High Digit	Register Data   Low Digit	CRC Check   Low Digit	CRC Check   High Digit
01	06	13	01	13	88	D1	D8

Slave Unit Response: Set the value for frequency inverter's frequency as 25.00 Hz , and return the identical data as requested by the host.
3. Return the frequency inverter's current operational frequency and rotation speed, the positive rotating frequency of frequency inverter is 50.00 Hz , and positive rotation speed of the electrical motor is 1440rpm.

## Host request:

Slave Unit   Address	Functional   Code	Register   Starting   Address High   Digit	Register   Starting   Address Low   Digit	Number of   Registers   High Digit	Number of   Registers   Low Digit	CRC Check   Low Digit	CRC Check   High Digit
01	03	D0	00	00	02	FC	CB

Slave Unit Response:

Slave Unit Address	Functional Code	Number of bytes read	The $1^{\text {st }}$   register data   high digit	The $1^{\text {st }}$ register data low digit	The $2^{\text {nd }}$ register data high digit	The 2 ${ }^{\text {nd }}$   register data   low digit	CRC Check Low Digit	CRC Check High Digit
01	03	04	13	88	05	A0	7D	B5

4. Query the number of bus communication failures (CRC error calculation), return the number of bus communication failure as 35 .

Host request:

Slave Unit   Address	Functional   Code	Sub-function   Code   High Digit	Sub-function   Code   Low Digit	Query data   High Digit	Query data   Low Digit	CRC Check   Low Digit	CRC Check   High Digit
01	08	00	$0 C$	00	00	20	08

Slave Unit Response:

Slave Unit   Address	Functional   Code	Sub-function   Code   High Digit	Sub-function   Code   Low Digit	Response   Data   High Digit	Response   Data   Low Digit	CRC Check   Low Digit	CRC Check   High Digit
01	08	00	$0 C$	00	23	61	D1

5. Query the model description for frequency inverter

Host request:

Slave Unit Address	Functional Code	CRC Check Low Digit	CRC Check High Digit
01	11	C0	$2 C$

Slave Unit Response:

Slave Unit   Address	Functional   Code	Number   of Bytes	Model Data	Operation   Status	Extra Data	CRC Check   Low Digit	CRC Check   High Digit
01	11	10	0000030510	FF	0403007520   1102037000	E2	33

Model of frequency inverter: A510-4T0075, frequency inverter in operation, production batch of 2011-2-3, version number: 7000.

## 12. ACCESSORIES

### 12.1 BRAKING UNIT

Operating Principle: When the inverter drags the motor for acceleration and reversing, the voltage of the DC bus inside the inverter may increase due to the motor's energy feedback. In order to prevent the inverter from stopping as a result of over voltage protection, the brake unit will automatically connect to the energy dissipation circuit before the voltage of the DC bus reaches the protection point. Hence the energy can be released in the way of heat energy via the braking resistance, so as to prevent voltage rising continuously.

### 12.1.1 MODEL OF BRAKE UNIT



Figure 12-1 Sketch of model description

### 12.1.2 MODEL SELECTION FOR BRAKE RESISTANCE

Below lists the power of brake resistance and resistance values recommended for part of models of SUNFAR. Users can appropriately change values according to the load conditions but within the range specified for SUNFAR brake unit.

Inverter capacity (KW)	Brake unit		Power of brake resistance (KW)	Brake resistance value ( $\Omega$ )	Quantity of brake resistance
	Specification	Quantity (set)			
18.5	DBKU-4T0450	1	2.5	30	1
22			2.5	27.2	1
30			3	20	1
37			4	15	1
45			5	13.6	1
55	DBKU-4T0900	1	6	10	1
75			8	8	1
90			9	7.5	1
110	DBKU-4T0900	2	6	12	2
132			8	10	2
160			9	8	2
185			10	7	2
200	DBKU-4T0900	3	8	9	3
220			9	9	3
280			10	7.5	3

The above configuration is for the brake resistance when the brake usage rate is $10 \%$ and the brake torque is $100 \%$. In order to get the brake torque above $100 \%$, it is needed to correspondingly reduce brake resistance value and promote the power glass of the brake resistance. But it is a must to guarantee that the current of the brake resistance is lower than the maximum current permitted for the brake unit.

### 12.1.3 APPEARANCE OF BRAKE UNIT



Figure 12-2 Appearance sketch

### 12.1.4 INSTALLATION SIZE OF BRAKE UNIT



Figure 12-3 Installation size diagram

The installation size of brake unit is shown in the following table:

Model of the brake unit	$\mathbf{W} 1(\mathbf{m m})$	$\mathbf{W}(\mathbf{m m})$	$\mathbf{H} 1(\mathbf{m m})$	$\mathbf{H}(\mathbf{m m})$	$\mathbf{D}(\mathbf{m m})$	Screw   specification
DBKU-4T0450(4T0900)	95	117	215	230	115	M5

### 12.1.5 SINGLE BRAKE UNIT AND INVERTER REFERENCE WIRING SKETCH



Figure 12-4 Wiring sketch
When the braking enabling (forbidding) function of the brake unit is applied, before the inverter starts running, it is a must to set the function of the inverter's deceleration effective control terminal (the control terminal corresponding to SUNFAR inverter is DO1 or DO2) connected to ENA to be effective during the deceleration process. If this function is not needed, please connect ENA to 24 V common port CM.

### 12.1.6 WIRING PRECAUTIONS

1. When connecting wires between the inverter and brake unit, reverse connection of $P+$ and $P$ - will burn the brake unit and damage the inverter. Be sure to check carefully before powering on the inverter.
2. For installation and wiring of the main loop, be sure to disconnect the inverter or power it off and wait for 5-10 minutes until the power indicator of the inverter or the brake unit goes off. The wiring of the control loop cannot be done with the mains power is connected principally.
3. Be sure to keep the control loop wires away from the connecting wires of main power circuit, in order to prevent improper action caused by interfering noise. If the control loop wires have to pass through the main loop connecting wires, be sure to make it pass through vertically. If the distance between the connecting wires is excessive, be sure to use twisted pair or shielded wires.

For more instructions of the brake unit please refer to the operating manual of the brake unit by visiting our website to download: http://www.sunfars.com/.

### 12.2 I/O INTERFACE CARD (STANDARD TYPE: DEC5IOAS, PN: 050M008005000)

### 12.2.1 OUTSIDE VIEW OF I/O STANDARD INTERFACE CARD



Figure 12-5 I/O standard interface

### 12.2.2 FUNCTIONS OF I/O STANDARD INTERFACE CARD TERMINAL

Terminal Type	Terminal Name	Functions
+24V power supply	+24V	Externally provide +24 V power supply, and maximum output current 100 mA
$\pm 10 \mathrm{~V}$ power supply	+10V, -10V	Externally provide +10 V power supply, and maximum output current 10mA
Analog input	Al1	To input analog voltage 0~10V, input impedance $\geq 1 \mathrm{M}$ ohm
	AI2	To input analog current 0~20mA
Analog output	AO1	Providing programmable analog voltage ( $0 \sim 10 \mathrm{~V}$ ) / current (0~20mA) output
Digital input	DI1~DI5	Programmable switch input, input frequency $\leq 1 \mathrm{KHz}$
Digital output	DO1~DO2	Programmable OC output, output frequency $\leq 1 \mathrm{KHz}$
Relay output	TA1	Programmable output, TA1-TB1 normally closed; TA1-TC1 normally open ; Contact capacity AC 250V/1A。
	TB1	
	TC1	
Common port	PLC	Common port of DI1~DI5
	GND	+10V, Al1, Al2, AO1 reference address
	CM	+24V, DO1, DO2 reference address

### 12.2.3 ASSEMBY OF STANDARD INTERFACE CARD

The extended card is assembled and disassembled as shown in Figure 2.
(Note: there're two sizes of jackets on the tray and card sockets. The extended cards may be inserted in either jacket of the same size on the tray. )

- Assembly:

1. Place the extended card horizontally in the direction as shown in the figure and align socket of the card with the jacket of card tray, and press until the extended card hug the tray closely;
2. Tighten the M3 fixing screw at top left corn of the extended card.

- Disassembly:

1. Loosen M3 fixing screw at top left corn of the extended card;
2. Pull the extended card upward from card tray.


Figure 12-6 Assembly and Disassembly of Extended Card

### 12.2.4 WIRING FOR STANDARD INTERFACE CARD



Figure 12-7 Wiring for I/O Standard Interface Card

### 12.3 I/O EXPANSION CARD STANDARD (STANDARD FORM DEC5I0AE, PN: 050M008004000)

### 12.3.1 I/O EXPANSION CARD STANDARD DIMENSIONS

## Dial switch



Figure 12-8 I/O expansion card

### 12.3.2 FUNCTIONS OF I/O STANDARD INTERFACE CARD TERMINAL

Terminal Type	Terminal Name	Functions
485 communication	RS+,RS-	Standard RS485 differential input communication physical port
+24V power supply	+24V	Externally provide +24 V power supply, and maximum output current 100 mA
$\pm 10 \mathrm{~V}$ power supply	+10V, -10V	Externally provide +10 V power supply, and maximum output current 10 mA
Analog input	Al3	Analog -10~10V input, input impedance $\geq 1 \mathrm{M}$ Ohm; see F4 parameter for details.
Analog output	AO2	Providing programmable analog voltage ( $0-10 \mathrm{~V}$ )/current (0~20mA) output
Digital input	DI6~DI8	Programmable switch input, and input frequency $\leq 1 \mathrm{KHz}$
	FI/DI9	Programmable switch input, and input $\leq 100 \mathrm{KHz}$
Digital output	Fo/DO3	Programmable OC output, output frequency $\leq 100 \mathrm{KHz}$
Relay output	TA2	Programmable output   TA2-TB2 normally closed; TA2-TC2 normally open; Contact capacity AC 250V/1A。
	TB2	
	TC2	
Common port	PLC	Common port of DI6~DI8, FI/DI9
	GND	$\pm 10 \mathrm{~V}, \mathrm{Al} 3, \mathrm{AO} 2$ reference address
	CM	+24V, FO/DO3 reference address

Refer to "User Manual of I/O Standard Expansion Card" for the using method and
detailed instructions of I/O standard expansion card.

### 12.4 PG FEEDBACK CARD (STANDARD TYPE DEC3PG12AA, PN: 050M009012001)

### 12.4.1 OUTSIDE VIEW OF PG FEEDBACK CARD (STANDARD)



Figure 12-9 PG card (Standard)

### 12.4.2 FUNCTIONS OF PG CARD (STANDARD) TERMINAL

Terminal Type	Terminal Name	Functions
+12 V power supply	+12 V	Externally provide +12 V power supply, and maximum   output current 250 mA
Common port	GD	+12 V power reference address
Output	AO	Reserved
	BO	Reserved
Differential input	$\mathrm{A}+, \mathrm{A}-$	Encoder A phase differential input
	$\mathrm{B}+, \mathrm{B}-$	Encoder B phase differential input
	$\mathrm{Z}+, \mathrm{Z}-$	Encoder Z phase differential input

Refer to "User Manual of PG feedback card (Standard)" for the using method and detailed instructions of PG feedback card (Standard).

### 12.5 DESCRIPTION OF LED OPERATING PANEL

### 12.5.1 OUTSIDE VIEW OF LED OPERATING PANEL



Figure 12-10-A LED button-type
(Model DPNL360EA/PN: 050M007360003)


Figure 12-10-B LED shuttle-type
(Model DPNL360EB/PN: 050M007360004)

Please refer to the product catalogue if you want to know more about optional accessories.


[^0]:    > The combination result will only be in bipolarity when only two setting sources are set in bipolarity way. (Figure c)

